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a b s t r a c t 

Ridge regression (RR) and its variants are fundamental methods for multivariable data analysis, which 

have been widely used to deal with different problems in pattern recognition or classification. However, 

these methods have their common drawback. That is, the number of the learned projections is limited 

by the number of class. Moreover, most of these methods do not consider the local structure of the data, 

which makes them less competitive in the case when data are lying on a lower dimensional manifold. 

Therefore, in this paper, we propose a robust jointly sparse regression method to integrate the locality 

geometric structure with generalized orthogonality constraint and joint sparsity into a regression modal 

to address these problems. The optimization model can be solved by an alternatively iterative algorithm 

using orthogonal matching pursuit (OMP) and singular value decomposition. Experimental results on face 

and non-face image database demonstrate the superiority of the proposed method. The matlab code can 

be found at http://www.scholat.com/laizhihui . 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Since the data in image/video processing, bioinformatics and

web data mining are often high dimensional, the computational or

memory cost can be very high. Therefore, it is very necessary to

have powerful tools to deal with those massive data sets. Feature

selection or extraction is considered one of the most effective tools

to select or compress the important information into a reduced

low-dimensional space [1–3] . Thus, many algorithms have been de-

veloped to deal with this problem [4,5] . The most widely used

multivariable analysis methods for dimensionality reduction are

principal component analysis (PCA) [6] , linear discriminant anal-

ysis (LDA) [7] , ridge regression (RR) and their variations. 

However, in many practical applications like face recognition,

the data is usually sampled from a nonlinear low-dimensional

manifold of the high dimensional ambient space and both of PCA,

LDA and RR are not suitable in these cases. Thus, many subspace

learning algorithms based on manifold learning are proposed [8–

12] . Motivated by the manifold learning methods, RR was extended

to have local preserving ability [13–15] . 

Although all the subspace learning methods mentioned above

have their suitable application cases, they still have a major disad-

vantage. That is, since their learned projections are linear combina-
∗ Corresponding author. 
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ions of all the original features, it lacks the interpretation of the

esults. For example, RR uses L 2 -norm on the regularization term

nd lacks sparsity property. However, many regression methods us-

ng L 1 -norm on the regularization term can obtain sparse projec-

ions, and thus they have attracted much attention in the field of

achine learning and pattern recognition [16] . The most represen-

ative sparse regression methods are the sparse RR [17] , and Elas-

ic Net [18] . Motivated by the sparse RR and the Elastic Net, many

ubspace learning methods were extended to sparse cases in re-

ression forms [19] , including sparse PCA (SPCA) [6] , sparse LDA

SLDA) [20] , sparse locality preserving embedding (SLPE) [21] and

parse locality preserving projections (SpLPP) [22] . All these meth-

ds learn sparse projections by incorporating L 1 norm regularized

egression in the process of learning projections. One of the main

isadvantages is that they are usually time-consuming because the

 1 -norm based methods conduct feature selection on high dimen-

ional image vectors. In addition, the learn projections are not joint

parse. That is, the L 1 -norm based sparse learning cannot obtain

he joint sparsity which is considered much more effective for fea-

ure selection and classification in computer vision or biometric. 

Motivated by the property of L 2, 1 -norm as regularization for

ointly sparse learning, the regression methods are further devel-

ped to be the jointly sparse regression [23–25] . Nie et al. pro-

osed efficient and robust feature selection (RFS) [26] via L 2, 1 -

orms minimization regression. This method uses L 2, 1 -norm on

oth of loss function and the regularization term on the regression

https://doi.org/10.1016/j.patcog.2019.04.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.04.011&domain=pdf
http://www.scholat.com/laizhihui
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c  
odel so as to not only enhance the robustness to outliers

ut also guarantee the joint sparse projections for effective fea-

ure selection. Other related L 2, 1 -norm based regression methods

27–31] were also proposed for jointly sparse subspace learning. 

No matter what kinds of variation of the above methods, the

asic model is still the form of ridge regression just using different

orms as the measurement on the main part or on the regulariza-

ion term. Therefore, in this paper, we focus on the basic model to

evelop a generalized ridge regression method to solve the poten-

ial drawbacks of the previous methods. First, the number of the

earned projections is limited by the number of class (i.e. small-

lass problem), which means that they cannot obtain enough pro-

ections for more effective feature selection. Second, the correla-

ion of the learned sparse projections direction is not taken into

onsideration. That is, since the projection directions are not mu-

ually orthogonal, the effectiveness of each projection direction is

ot guaranteed. Third, the robustness as well as flexibility of the

revious L 2, 1 -norm based methods are unknown since there is no

pecific technic incorporated into their objective functions to re-

ease this problem. Therefore, to release the above problems, we

ave done some research and the previous work was published as

 conference paper [32] . However, the previous work still did not

onsider the orthogonality of the projection direction. Also, the lo-

al geometric structure of the data is ignored. In this paper, we fur-

her extend the proposed method in the conference paper [32] into

 more general form. That is, one more constraint characterizing

he manifold structure of the data is appended to the model in

32] . We call the proposed method Robust Jointly Sparse Regres-

ion (RJSR), which aims to solve the problems mentioned above so

s to not only improve the performance of feature selection and

xtraction but also enhance the robustness. 

The main contributions of this paper have three-folds: 

1) The optimal projections are mutually orthogonal by adding gen-

eralized orthogonal constraint and the optimal solution is itera-

tively learned via Orthogonal Matching Pursuit (OMP). The OMP

is able to help the model to obtain more discriminative infor-

mation for effective feature selection. 

2) The robustness is enhanced by not only utilizing L 2, 1 -norm in-

stead of L 2 -norm on the loss function to reduce the sensitivity

to outliers, but also incorporating an elastic factor on the re-

gression model to avoid the overfitting which usually arises in

regression-based methods. 

3) The proposed method can break through the small-class prob-

lem, which exists in the regression-based methods or the LDA-

based methods, so as to obtain more projections to improve the

performance of pattern recognition or classification. In addition,

the convergence of the proposed algorithm is also proved. 

The rest of this paper is organized as follows. The related

orks are presented in Section 2 while Section 3 gives the ob-

ective function and the optimal solution of the proposed method.

ection 4 presents the theoretical analysis including the conver-

ence of the proposed algorithm and its computational complexity.

he experiment is analyzed in Section 5 and the conclusion of the

aper is drawn in Section 6 . 

. Related works 

In this section, we first present the notations used in this pa-

er and then briefly review some related works of the proposed

ethod. 

.1. Notations 

Matrices are written as bold italic uppercase letters, i.e. A,B,X,Y ,

tc., the vectors are represented as bold italic lowercase, i.e. x,y,h ,
tc. while scalars are denoted as italic lowercase or uppercase let-

ers, i.e. i, j, n, K, α, β , etc. Let the data matrix denoted as X ∈ R n × d 

here n is the number of the samples and d denotes the feature

imension of each sample, i.e. each row of X is a sample vector.

he label matrix is denoted as Y ∈ R n × c with Y i j = 1 while x 1 be-

ongs to the j th class; Y i j = 0 , otherwise, where c is the number of

he classes. 

.2. The LPP and its property 

Locality Preserving Projections (LPP) [8] obtains the linear pro-

ection to optimally preserve the neighborhood structure of the

ata set. Supposed a is one of the projection that projects the data

et x 1 , x 2 , … , x m 

in R n to be y 1 , y 2 , … , y m 

, namely, y = a T x i [33] .

inimizing the following objective function provides the optimal

olution of LPP: 

1 

2 

∑ 

i j 

( y i − y j ) 
2 ˜ W i j = 

1 

2 

∑ 

i j 

( a T x i − a T x j ) 
2 ˜ W i j 

= a T X ( ̃  D − ˜ W ) X 

T a = a T X ̃

 L X 

T a (1) 

here ˜ W is a symmetric matrix and it elements are defined as

ollow: 

˜ 
 i j = 

{
exp (−|| x i − x j | | 2 /t) , || x i − x j | | 2 ≺ ε 

0 otherwise 
(2) 

here parameter ɛ ∈ R denotes ɛ -neighborhoods, x i is the K neigh-

orhood to x j , x j is the K neighborhood to x i and 

˜ D is a diagonal

atrix and its elements are row (or column) sum of ˜ W , namely,
˜ 
 ii = 

∑ 

i 

˜ W i j . ˜ L = 

˜ D − ˜ W is the Laplacian matrix. 

The optimal a is given by the minimum eigenvalue solution of

he generalized eigenvalue problem [34] : 

 ̃

 L X 

T a = λX ̃

 D X 

T a (3) 

Thus, the optimal projection matrix for LPP is A =
 a 1 , a 2 , . . . , a l ] , where the vectors a i (i = 0 , 1 , . . . , l) are the eigen-

ectors corresponding to the smaller eigenvalues. 

.3. The L 2, 1 -norm and its property 

Recently, the L 2, 1 -norm is widely used not only on loss func-

ion to reduce the sensitivity to outliers, but also on regularization

erm to obtain the joint sparsity for feature selection and feature

xtraction [35] . 

The L 2, 1 -norm of a matrix M ∈ R n × m is defined as 

 

M ‖ 2 , 1 = 

n ∑ 

i =1 

√ 

m ∑ 

j=1 

m 

2 
i j 

= 

n ∑ 

i =1 

∥∥m 

i 
∥∥

2 
(4) 

L 2, 1 -norm was first introduced in [36] as the rotational invari-

nt L 1 -norm, it is also fit for multi-task learning [37] and tensor

actorization [38] . By using the L 2, 1 -norm on both loss function

nd regularization term, the L 2, 1 -norm based methods can easily

btain the discriminative vectors for feature selection by setting

he elements in some rows of the projection matrix become zero.

ince there is no squared operation in the L 2, 1 -norm based meth-

ds, they are more robust and less sensitive to outliers than those

 2, 1 -norm based methods. The difference between L 2, 1 -norm and

 1 -norm is that using L 2, 1 -norm penalty on the regularization term

an obtain jointly sparse projections to improve the performance

f feature extraction and selection. 

.4. Orthogonal matching pursuit (OMP) 

Orthogonal Matching Pursuit (OMP) is known as the canoni-

al greedy algorithm for sparse learning [39] . It is believed to be
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valuable to explore alternative approaches like OMP which is not

based on optimization to handle the signal recovery problem and

compressive sensing [40] . Let �∈ R M × N denotes a matrix, ˜ y is a

vector in R M . The goal of OMP is to find a coefficient vector ˆ x ∈ R N 

with N (N �M ) nonzero terms so as to minimize ‖ ̃ y − �ˆ x ‖ 2 . OMP

is usually used to obtain sparse representations for signal ˜ y in sig-

nal processing where ˜ y = �ˆ x denotes an overcomplete dictionary

for the signal space [41] . In compressing sensing, ˜ y = �ˆ x repre-

sents compressive measurements of a sparse or nearly sparse sig-

nal ˆ x to be discovered [42–43] . 

The major advantage of OMP is its low computational cost and

easy implementation. The entire algorithm of OMP is shown in

Algorithm 1 . In spite of the simplicity, OMP is empirically com-

petitive in approximation performance [44] . The key difference be-

tween MP and OMP is that with the finite dictionaries of size M ,

OMP converges in no more than M iterations while MP does not

possess this property [41] . 

Algorithm 1 Orthogonal matching pursuit. 

Input: �, ̃  y , convergent criterion ɛ 
initialize: r 0 = ̃  y , x 0 = 0 , �0 = φ, � = 0 

while not converged do 

match: h � = �T r � 

identify: 

�� +1 = �� ∪ { arg ma x j | h � ( j) | } (if multiple maxima exist , choose only one) 

update: x � +1 = arg mi n z : supp (z ) ⊆�� +1 ‖ ̃ y − �z ‖ 2 , r � +1 = ̃  y − �x � +1 , � = � + 1 

end while 

output: ˆ x = x � = arg mi n z : supp( z ) ⊆�� ‖ ̃ y − �z ‖ 2 

3. Robust jointly sparse regression 

In this section, we first present the motivations and the novel

definitions of the paper, and then introduce our previous work

presented in [32] . Based on the groundwork, we finally propose

our objective function of the model and its corresponding opti-

mal solution. Some comparison and discussion versus other rele-

vant methods are also made to demonstrate the novelty and the

advantages of the proposed method. 

3.1. The motivations and the novel definitions 

Recently, many ridge regression based methods are proposed

to deal with different problems, such as dimensionality reduction,

feature selection and sparse learning. Among those methods, a

method called robust feature selection (RFS) [45] is widely used in

many cases. RFS utilizes the joint L 2, 1 -norm on both loss function

and regularization term to guarantee the robustness to outliers and

simultaneously obtain joint sparse protection for feature selection.

The idea of the method is based on the property of L 2, 1 -norm. The

RFS can be described as follows: 

min 

P 
‖ 

XP − Y ‖ 2 , 1 + λ‖ 

P ‖ 2 , 1 (5)

where P ∈ R d × c is the projection matrix and λ is the parameter of

the modal. 

Although RFS can improve the performance of pattern recogni-

tion and classification in some degree, it still has some drawbacks.

First, it does not take the small-class problem into consideration.

That is, the number of the learned projection is still limited by the

number of the class, which makes it cannot obtain enough projec-

tions for further feature selection in some cases. Second, the loss

function in RFS is just a modification of the classical ridge regres-

sion, which has the potential risk of overfitting. In this context,

the performance of feature selection or classification will be af-

fected. Therefore, we need to define a novel form for robust jointly

sparse regression. Motivated by the property of the elastic factor in

[46,47] and the decomposition of matrix, we propose the following

model in [32] : 
min 

 , B , h 

∥∥XB A 

T + 1 h 

T − Y 

∥∥
2 , 1 

+ α‖ 

B ‖ 2 , 1 

s . t . A 

T A = I 
(6)

here B ∈ R d × k , A ∈ R c × k is the projection matrix and the auxiliary

atrix, respectively. k is the number of objective dimension. 1 ∈ R n 

s a constant vector with all elements equaling to 1 and h ∈ R c is an

lastic factor incorporated to the loss function to avoid the prob-

em of overfitting so as to enhance the robustness of the method,

is the parameter to balance the two terms. 

The common advantage of (6) and RFS is that they all use L 2, 1 -

orm instead of L 2 -norm as the basic measurement on the loss

unction, which provides less sensitivity to outliers. Also, by using

he L 2, 1 -norm penalty on the regularization term, they can guaran-

ee the joint sparsity of the projection matrix. That is, by making

he elements in some rows of the learned projection matrix be 0,

he important features corresponding to the nonzero elements can

e highlighted and simultaneously the unusual information can be

ltered out. The difference between (6) and RFS is that although

hey both can obtain the joint sparsity to improve the performance

f feature selection and classification, model (6) has the potential

o release the small-class problem and avoid the overfitting prob-

em in ridge regression-based methods. Since the size of the pro-

ection matrix B is d × k , with which we can obtain more projec-

ions by setting k as any number larger than the number of class.

n this way, we can release the small-class problem and guarantee

nough projections to construct a more discriminative subspace

or effective feature selection or classification. Moreover, the elas-

ic factor on the loss function is able to provide supplement for

he fitting between XBA 

T and Y such that the potential overfitting

roblem can be avoided. 

Although (6) enjoys many merits which makes it capable to im-

rove the performance of pattern recognition or classification in a

egree, it still needs to improve because it neither considers the

eighborhood relationship of the original data nor guarantees the

rthogonality of the projection directions. As shown in [8,10,48] ,

he information of manifold structure is of great importance in the

ase when data is not embedded in linear subspace. Also, the or-

hogonal projection is proved to be more discriminative in most

ases. It can also release the correlation of the learned projections

o as to construct a more effective and discriminative subspace for

eature selection. Therefore, based on the regard of orthogonality

f the projection direction, the locality preserving property and the

parsity, a more effective and compact model for feature selection

s needed. 

In this paper, we propose a novel method to release the prob-

ems in (6) and further improve the performance of recognition or

lassification tasks in face images or other images by integrating

he locality of the data as a constraint on the generalized regres-

ion model. 

.2. The objective function of RJSR 

By combining the joint sparsity, robustness and locality preserv-

ng property with the generalized orthogonality constraint on the

rojection matrix, we have the following objection function of the

roposed RJSR: 

min 

 , B , h 

∥∥XB A 

T + 1 h 

T − Y 

∥∥
2 , 1 

+ α‖ 

B ‖ 2 , 1 

s . t . A 

T A = I , 

B 

T X 

T WXB = I 

(7)

here W ∈ R n × n is the affinity graph as in LPP. The elements in W

s defined as 

 i j = 

{ 

1 , if x i is among K nearest neighbors of x j 

or x j is among K nearest neighbors of x i 

0 otherwise; 
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By adding the constraint B 

T X 

T WXB = I to the objective func-

ion, (7) is quite different from (6) . (7) not only considers the

rthogonality of the projection matrix B , but also preserves the

eighborhood relationship of the original data so that it can search

 more discriminative subspace for effective feature selection or

xtraction. Differing from the previous regression methods, the

ost significant property of the proposed model is that it uses

he locality preserving term as a constraint instead of a regularized

erm. 

.3. The optimal solution of RJSR 

For the orthogonality constraint B 

T X 

T WXB = I , let B̄ = 

√ 

W XB ,

e have B̄ 

T B̄ = I , B = C ̄B , where C = ( 
√ 

W X ) −1 . Therefore, (7) can

e rewritten as 

in 

 , ̄B , h 

∥∥XC ̄B A 

T + 1 h 

T − Y 

∥∥
2 , 1 

+ α
∥∥C ̄B 

∥∥
2 , 1 

s . t . A 

T A = I , 

B̄ 

T B̄ = I 

(8) 

From the definition of L 2, 1 -norm on the projection matrix B̄ , we

ave the following diagonal matrix D̄ with elements on the diago-

al defined as [26] : 

¯
 ii = 

1 

2 

∥∥∥( C ̄B ) 
i 
∥∥∥

2 

(9) 

here ( C ̄B ) i represents the i th row of matrix C ̄B . 

Similarly, for ‖ XC ̄B A 

T + 1 h 

T − Y ‖ 2 , 1 , the corresponding diagonal

atrix D can be defined as 

 ii = 

1 

2 

∥∥∥( XC ̄B A 

T + 1 h 

T − Y ) 
i 
∥∥∥

2 

(10) 

here ( XC ̄B A 

T + 1 h 

T − Y ) i represents the i th row of matrix

C ̄B A 

T + 1 h 

T − Y . 

Therefore, the first part in (8) can be rewritten as 

XC ̄B A 

T + 1 h 

T − Y 

∥∥
2 , 1 

= tr( ( XC ̄B A 

T + 1 h 

T − Y ) T 

D ( XC ̄B A 

T + 1 h 

T − Y )) (11) 

nd the second part in (8) is written as ∥∥C ̄B 

∥∥
2 , 1 

= tr( ̄B 

T C 

T D̄ C ̄B ) (12) 

From (11) and (12) , (8) can be rewritten as 

XC ̄B A 

T + 1 h 

T − Y 

∥∥
2 , 1 

+ α
∥∥C ̄B 

∥∥
2 , 1 

= tr( ( XC ̄B A 

T + 1 h 

T − Y ) T D ( XC ̄B A 

T + 1 h 

T − Y )) 

+ αtr( ̄B 

T C 

T D̄ C ̄B ) (13) 

That is, 

XC ̄B A 

T + 1 h 

T − Y 

∥∥
2 , 1 

+ α
∥∥C ̄B 

∥∥
2 , 1 

= tr( ̄B 

T C 

T X 

T DXC ̄B + 2 ̄B 

T C 

T X 

T D1 h 

T A − 2 ̄B 

T C 

T X 

T DYA 

+ h 

T h 1 

T D1 − 2 h 

T Y 

T D1 + Y 

T DY + αB̄ 

T C 

T D̄ C ̄B ) (14) 

Since there are three variables (i.e. A, B and h ) in the objective

unction in (7) and they cannot be obtained directly, we adopt an

terative approach to find the optimal solution. The detail of the

pproach is described as below. 

h step: Set the derivatives of the objective function in (14) with

espect to h equaling to zero, we have 

 = 

1 

s 
( Y 

T − A ̄B 

T C 

T X 

T ) D1 (15)

here s = 1 T D1 . 
A step: Suppose the variable h and B̄ are fixed, the optimal so-

ution of (14) can be obtained by minimizing the following prob-

em: 

in 

A 
tr 

[
A 

T (h 1 

T − Y 

T ) DXC ̄B 

]
s . t . A 

T A = I (16) 

heorem 1. [6] Given an orthogonal matrix G ∈ R c × k and a matrix

 ∈ R c × k with rankk. Consider the following optimization problem 

ˆ 
 = arg min 

G 
tr( G 

T Q ) 

s.t. G 

T G = I k 
(17) 

Suppose singular value decomposition (SVD) of Q is Q = 

˜ U ̃

 D ̃

 V 

T ,

hen ˆ G = 

˜ U ̃

 V 

T . 

From Theorem 1 , we can easily know that for given h and B̄ in

14) , suppose the SVD of (h 1 T − Y 

T ) DXC ̄B is 

(h 1 

T − Y 

T ) DXC ̄B = 

� 

U 

� 

D 

� 

V 

T 

(18) 

e have 

 = 

� 

U 

� 

V 

T 

(19) 

B step: Since B = C ̄B , we need to first obtain the optimal value

f B̄ , and then compute the optimal value of variable B . 

heorem 2. Suppose S is any symmetric matrix, and the singular

alue decomposition of S is 
	 

U 

	 

D 

	 

U 

T 

, then the following optimization

roblem 

ˆ 
 = arg min 

M 

tr( M 

T X 

T SXM − 2 M 

T X 

T Y ) (20)

is equal to a quadratic form as 

ˆ 
 = arg min 

M 

∥∥∥∥∥∥
( (

	 

D 

1 / 2 	 

U 

T 
)T 

) −1 

Y −
(

	 

D 

1 / 2 	 

U 

T 
)

XM 

∥∥∥∥∥∥
2 

2 

(21) 

Proof. The proof is in the Appendix. 

From (14) , by eliminating the terms without variable B̄ , we have

r 
[
B̄ 

T C 

T ( X 

T DX + αD̄ ) C ̄B − 2 ̄B 

T C 

T X 

T D (Y − 1 h 

T ) A 

]
(22) 

That is, 

r( ̄B 

T C 

T HC ̄B − 2 ̄B 

T C 

T Z ) (23) 

here H = X 

T DX + αD̄ , Z = X 

T D (Y − 1 h 

T ) A . Note that H is a sym-

etric matrix, from Theorem 2 , we have 

in 

B̄ 
tr( ̄B 

T C 

T HC ̄B − 2 ̄B 

T C 

T Z ) 

⇔ min 

B̄ 

∥∥∥∥( ( ̂  D 

1 / 2 ˆ U 

T ) 
T 
) 
−1 

Z − ( ̂  D 

1 / 2 ˆ U 

T ) C ̄B 

∥∥∥∥
2 

2 

(24) 

here the SVD of H is ˆ U ̂

 D ̂

 U 

T . 

Suppose Y 

∗ = ( ( ̂  D 

1 / 2 ˆ U 

T ) T ) −1 Z , X 

∗ = 

ˆ D 

1 / 2 ˆ U 

T C , (24) can be rewrit-

en as 

( ( ̂  D 

1 / 2 ˆ U 

T ) 
T 
) 
−1 

Z − ( ̂  D 

1 / 2 ˆ U 

T ) C ̄B 

∥∥∥∥
2 

2 

= 

∥∥Y 

∗ − X 

∗B̄ 

∥∥2 

2 
(25) 

Therefore, the optimal value of variable B̄ can be obtained by

olving the following optimization problem 

ˆ ¯
 = arg min 

B̄ 

∥∥Y 

∗ − X 

∗B̄ 

∥∥2 

2 

s.t. B̄ 

T B̄ = I (26) 

The optimal solution of (26) can be computed using Orthogonal

atching Pursuit (OMP) algorithm. Thus, we can obtain the opti-

al value of B̄ by calling Algorithm 1 iteratively. 
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For easy understanding, we conclude the procedures of find-

ing the optimal solution of the objective function (7) or (8) in

Algorithm 2 . 

Algorithm 2 Robust jointly sparse regression. 

Input: The sample matrix X ∈ R n × d , the label matrix Y ∈ R n × c , the affinity graph 

W ∈ R n × n , the objective dimension k ( k ≤ d ), the parameter α, the maximum 

iteration step T . 

Output: Low-dimensional and orthogonal discriminative subspace 

B ∈ R d×k (k = 1 , 2 , . . . , d) . 

Initialize A ∈ R c×k , B ∈ R d×d , B̄ ∈ R n ×k , D ∈ R n × n , D̄ ∈ R d×d , h ∈ R c×1 randomly, set 

1 ∈ R n ×1 with all elements equaling to 1, set C = ( 
√ 

W X ) −1 . 

for i = 1 , 2 , . . . , T do 

update D ii using D ii = 

1 

2 ‖ ( XC ̄B A T + 1 h T −Y ) 
i ‖ 2 

; 

update D̄ ii using D̄ ii = 

1 

2 ‖ ( C ̄B ) i ‖ 2 
; 

update h using h = 

1 
s 
( Y T − A ̄B T C T X T ) ̂ D 1 ; 

compute A using A = 

� 

U 

� 

V 
T 

in (19) ; 

compute B̄ using OMP algorithm of (26) ; 

end 

Return: B = C ̄B 

3.4. Comparison and discussion 

LPP is able to preserve neighborhood information of the original

data and transfer it into a new subspace, in which the proximity is

remained. Neighborhood preserving embedding (NPE) [10] aims to

preserve the local neighborhood structure of the data points by us-

ing local squares approximations to obtain the affinity weight ma-

trix. But they all ignore the orthogonality of the projection direc-

tion. 

As indicated in [49] , adding orthogonality penalty on the pro-

jection directions can improve the ability of preserving the intrin-

sic geometric structure of the original data. Based on this regard,

some orthogonal locality preserving methods are proposed. Or-

thogonal LPP (OLPP) [50] and orthogonal NPE (ONPE) [51] incorpo-

rate the orthogonality penalty to the projection directions to obtain

orthogonal basis functions which is more powerful and discrimina-

tive than that of the LPP or NPE. In addition, the sparse preserving

projection is considered to be quite powerful in sparse subspace

learning. By minimizing the L 1 -norm regularization-related objec-

tive function, the sparsity preserving projections (SPP) [52] and

sparse locality preserving embedding (SpLPE) [21] are able to pre-

serve the sparse reconstructive relationship of the original data.

Base on the previous work, we can conclude that the information

of local geometric structure, the orthogonality of the projection di-

rections as well as the sparsity are consider quite valuable for ef-

fective feature selection. 

Although LPP and NPE preserve the neighborhood relationship

of the data, they do not have sparsity or orthogonality, not to men-

tion that their robustness is not guaranteed. For OLPP and ONPE,

even though they obtain the orthogonality of the projection direc-

tion, they still ignore the sparsity for effective interpretation of the

results. SPP and SpLPE are the algorithms in terms of locality pre-

serving with sparsity. However, since they utilize L 1 -norm as the

basic measurement on the regularization term, they cannot obtain

the joint sparsity for effective feature selection. Differ from these

methods, RJSR can not only guarantee the locality preserving abil-

ity and joint sparsity for effective feature selection, but also reduce

the sensitivity to outliers by using L 2, 1 -norm instead of L 2 -norm

as the basic measurement on the loss function. What is more, the

elastic factor incorporated in the loss function is able to release

the potential overfitting problem such that the robustness of the

model is further enhanced. 

Compared with the jointly sparse learning methods, such as

RFS, UDFS, USSL, FSSL, L21FLDA [53] , the proposed RJSR is able to

obtain more discriminative projection direction by adding the or-
hogonality constraint on the projection. Moreover, RJSR is capable

o release the drawback in regression-based or LDA-based methods

hat the number of the learned projections is limited by the num-

er of class, such that it can obtain more projections to improve

he performance of pattern recognition or classification. 

In conclusion, by integrating the locality preserving with joint

parsity as well as generalized orthogonality and considering the

otential risk of overfitting and the small-class problem, RJSR is

ifferent from the existing locality preserving methods, the rel-

vant jointly sparse learning methods and the regression-based

ethods. 

. Theoretical analysis 

In this section, theoretical analysis including the convergence

f the proposed algorithm and the corresponding computational

omplexity is presented. 

.1. The convergence 

The following Lemmas are presented to help to verify the con-

ergence of the proposed algorithm. 

emma 1. [26] Given any two nonzero constants a and b, it holds 

 

a − a 

2 

√ 

b 
≤

√ 

b − b 

2 

√ 

b 
(27)

emma 2. [26] Suppose U ∈ R is any nonzero matrix, the following

nequality holds 

 

i 

|| u 

i 
t | | 2 −

∑ 

i 

|| u 

i 
t || 2 2 

2 || u 

i 
t−1 

| | 2 ≤
∑ 

i 

|| u 

i 
t−1 | | 2 −

∑ 

i 

|| u 

i 
t−1 || 2 2 

2 || u 

i 
t−1 

| | 2 (28)

where u 

i 
t and u 

i 
t−1 

represent the i-th row of matrix U t and U t−1 ,

espectively. 

According to Lemmas 1 and 2 , we obtain the following theorem.

heorem 3. Suppose all parameters on the objective function of ( 13 )

re given except A , ̄B , h , D , D̄ , the proposed Algorithm 2 will monoton-

cally decrease the objective function value during each iteration and

nally provide a local optimal solution for the objective function. 

Proof. The proof is in the Appendix. 

.2. Computational complexity analysis 

Suppose the dimension of training samples is d and the num-

er of iteration times is T . There are five variables (i.e. A , ̄B , h , D , D̄ )

eed to update iteratively using the proposed Algorithm 2 . Com-

uting h in (15) needs O (4 d 2 ) while it takes O ( d 3 ) to obtain A from

VD of (h 1 T − Y 

T ) DXC ̄B . From (28) , the main cost of OMP is O ( kNd )

40] , where k is the number of sparse approximation in B̄ and N is

he number of samples. Computing D in (10) and D̄ in (9) all need

 ( dk ) and O ( Nc ). To sum up, the major computational complexity

f the proposed algorithm is up to O (T ( d 3 + 4 d 2 + kNd + dk + Nc)) .

. Experiments 

In this section, the COIL100 dataset ( http://www.cs.columbia.

du/CAVE/software/softlib/coil-100.php ) is first used to evaluate

he performance of the proposed RJSR when images are with ro-

ational variations. Then experiments on other five databases are

onducted to evaluate the performance of the proposed method

n face databases (i.e. Yale [54] , ORL [55] and AR [56] Dataset) and

on-face databases (i.e. hyperspectral images from the University

f Pavia Data Set (PaviaU) [57] , Binary alpha dataset). Plus, the ro-

ustness and the flexibility of the proposed method are also eval-

ated under the case when face images are corrupted by block or

oise. 

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Fig. 1. Sample images on COIL100 database. 
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Fig. 3. Sample images on ORL database. (a) Original facial images. (b) Facial images 

corrupted by gaussian noise. 

Fig. 4. Sample images on Yale database. (a) Original facial images. (b) Facial images 

corrupted by gaussian noise. (c) Facial images corrupted by random block with size 

15 × 15. 
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Other comparative methods including the locality preserving

earning methods LPP [8] , OLPP [50] and the fast and orthogonal

PP (FOLPP) [58] , the L 2, 1 -norm relevant methods like the joint

mbedding learning and sparse regression (JELSR) [59] , the L 1 -

orm based methods including approximate orthogonal sparse em-

edding (SLE) [60] and outlier-resisting graph embedding (LPP-L1)

61] , are also conducted on all experiments. 

.1. Experiments on manifold learning 

In this subsection, the proposed RJSR is applied to verify

he performance on keeping the local structure of the data. The

OIL100 contains 7200 images from 100 classes and each class has

2 images with rotational variations. In our experiment, all images

re converted into gray images with 32 × 32 pixels. Fig. 1 shows

he sample images on this database. 

On COIL100 dataset, we first learn the projection space by using

he proposed RJSR. Then all the images are used to map onto the

pace. Fig. 2 shows the results that the images mapped onto the

wo-dimensional plane described by two coordinates of the pro-

osed RJSR. Some representative images are shown closed to the

ata points in the figures. As can be seen, the viewing point of the
ig. 2. A two-dimensional representation of the images on COIL100 using the proposed RJ
mages changes smoothly, which indicates that RJSR is able to pre-

erve the local structure of the data. 

.2. Experiments on face database 

The ORL database [55] has total 400 images from 40 individ-

als. The images are with variation in pose, facial expression and

etail. Fig. 3 (a) shows the sample image of one individual on ORL

atabase. 

The Yale dataset [54] contains 165 images from 15 individuals.

here are facial expression and lighting conditions various in those

mages. Fig. 4 (a) presents the sample image of one person on Yale

atabase. 
SR. Some representative images are shown closed to the corresponding data points. 
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Fig. 5. Sample images on AR database. 
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The AR dataset [56] is consist of 2400 images from 120 individ-

uals (65 men and 55 women). The images vary as follows: neutral

expression, smiling, angry, screaming, left light on, right light on,

all sides light on, wearing sun glasses, wearing sun glasses and left

light on, wearing sun glasses and right light on. Fig. 5 shows the

sample images on this dataset. 

1) Sensitivity analysis of parameter settings 

In this section, experiments are conducted to analyze the in-

fluence of the parameters to the proposed RJSR. Since α is used

to control and balance the behavior of the proposed algorithm, it

needs to be analyzed on all databases. The proposed modal also

takes the local structure of the data points into consideration by

constructing the affinity graph which is related to the K nearest

neighbors. Based on this regard, the experiments on all databases

were conducted 10 times independently to explore the optimal

value of α and K . 

We explore the best value of α from the area of

[ 10 −9 , 10 −8 , . . . , 10 9 ] while K is set as a constant. Similarly,

the variation of K from 1 to 30 was explored while α was fixed.

The performance versus the variation of parameter α and K are

shown in Fig. 6 . From Fig. 6 . (a), we can know that the variation of

α would affect the performance of RJSR in a degree. The optimal

value of α on ORL, Yale, AR, Binary database is [10 6 , 10 7 ], [10 5 ,

10 6 , ‖ 10 9 ], [10 6 , 10 7 , ‖ 10 9 ], [10 1 , 10 2 , 10 8 ], respectively. For PaviaU

database, it is obvious that the performance of RJSR is not sensitive

to the value of α. Although we can set α = [ 10 −9 , 10 −8 , . . . , 10 9 ] to

conduct the experiment on PaviaU database, we select a sub-area

of [10 5 , 10 6 , ‖ 10 9 ] for simplicity. Fig. 6 . (b) indicates that the

optimal value of K on ORL, Yale, Binary and PaivaU database is 4,

4, 5, 5, respectively, while it can be set as any integer from 1 to

30 on AR database. 

2) Experiment settings 
Fig. 6. The recognition rate versus the variation of (a) 
The images on all databases are cropped and aligned automat-

cally. In each experiment, the images are divided into training set

nd testing set. The training set is formed by randomly selecting l

mages from each class while the rest of images are used as test-

ng. For fair comparison, the experiments on all databases are con-

ucted 10 times so as to obtain average recognition rate to evalu-

te the performance of the proposed method and the comparative

ethods. Since the dimension of the images is usually very high, it

ends to be time-consuming to perform feature selection directly.

ase on this regard, we divide our experiments into three steps.

irst, we use PCA as the pre-processing to conduct dimensional-

ty reduction. Second, the training set is used by the feature selec-

ion or dimensionality reduction algorithms to learn a low dimen-

ional embedding space. Finally, the testing set is mapped onto the

earned subspace and the nearest neighbor classifier is utilized for

lassification. For easy understanding, the average recognition rate

ersus the variation of dimension is plotted in figures while the

aximum average recognition rate and the corresponding dimen-

ion as well as the standard deviations are shown in tables. For the

omparative methods which have input parameters, we follow the

etting of the parameters as introduced in the original paper. 

In this experiment, l(l = 4 , 5 , 6) images of each individual are

andomly selected to form the training set and the rest is used for

esting. The performance of the proposed method and the compar-

tive methods on Yale, ORL, AR database are shown in Figs. 7 and

 (a) and Tables 1–3 . The experimental results indicate that the

roposed method can obtain the best performance. 

.3. Experiments on non-face databases 

In this experiment, we evaluate the performance of the pro-

osed method in terms of hyperspectral images and digits and let-

ers images. Base on this regard, the University of Pavia Data Set

PaviaU) and the Binary alpha dataset are used in our experiments.

The Binary alpha dataset is comprised of digits from “0 ′′ to “9 ′′ 
nd letters from “A” to “Z” and every class has 39 images with

6 × 46 pixels. The sample image on this dataset is presented in

ig. 9 . ( http://www.cs.nyu.edu/roweis/data.html ). 

The PaviaU dataset [57] was obtained by the ROSIS sensor dur-

ng a flight campaign over Pavia University. There are 103 bands

ithout noise left for our experiment. The dataset contains 9

round truth classes: asphalt, meadows, gravel, trees, metal sheets,

oil, bitumen, bricks and shadows. Fig. 10 illustrates the sample

mage in false color as well as the corresponding ground truth. 
regularization term coefficients (b) K -neighbors. 

http://www.cs.nyu.edu/roweis/data.html
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Fig. 7. Experimental results on facial image datasets. (a) Yale database ( l = 4), (b) ORL database ( l = 4) . 

Fig. 8. Experimental results on image datasets. (a) AR database ( l = 4), (b) Binary database ( l = 20) . 

Table 1 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on Yale datasets. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

4 92.76 ± 13.95 

24 

84.76 ± 14.77 

26 

89.81 ± 30.34 

29 

77.52 ± 10.90 

12 

94.48 ± 12.91 

36 

91.81 ± 26.41 

40 

59.05 ± 8.21 

7 

96.57 ± 12.74 

36 

97.14 ± 12.46 

31 

5 93.44 ± 12.96 

20 

90.00 ± 13.86 

24 

92.00 ± 24.90 

30 

79.67 ± 12.04 

14 

95.22 ± 12.74 

37 

93.00 ± 26.95 

40 

64.00 ± 8.32 

9 

96.78 ± 13.84 

36 

97.11 ± 12.44 

37 

6 95.20 ± 12.87 

20 

95.07 ± 14.72 

20 

94.40 ± 15.74 

32 

83.47 ± 11.77 

12 

97.20 ± 12.52 

34 

95.20 ± 26.88 

40 

87.60 ± 12.90 

39 

97.60 ± 11.69 

40 

98.27 ± 11.70 

30 

Table 2 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on ORL datasets. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

4 92.54 ± 9.91 

30 

90.17 ± 11.05 

29 

91.46 ± 29.17 

24 

75.33 ± 7.47 

6 

93.50 ± 16.02 

28 

92.54 ± 9.98 

30 

86.79 ± 10.59 

30 

94.38 ± 14.36 

26 

94.50 ± 13.69 

26 

5 94.80 ± 9.59 

28 

93.95 ± 11.12 

30 

94.30 ± 20.48 

26 

79.75 ± 8.05 

7 

95.70 ± 15.51 

28 

94.75 ± 9.57 

25 

90.45 ± 10.13 

30 

96.50 ± 14.82 

28 

96.75 ± 13.50 

27 

6 96.31 ± 9.57 

26 

95.88 ± 10.01 

30 

96.13 ± 10.67 

28 

78.19 ± 7.84 

6 

97.19 ± 16.12 

27 

96.31 ± 9.57 

23 

92.75 ± 10.35 

28 

97.44 ± 14.35 

30 

97.50 ± 14.36 

27 
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Table 3 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on AR datasets. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

4 79.45 ± 8.07 

150 

82.59 ± 13.13 

150 

77.46 ± 21.94 

125 

61.77 ± 15.30 

150 

90.39 ± 24.03 

135 

79.45 ± 8.07 

150 

56.54 ± 10.21 

150 

90.65 ± 11.65 

145 

90.76 ± 11.49 

135 

5 81.96 ± 9.50 

150 

85.94 ± 13.83 

150 

80.03 ± 18.23 

130 

64.82 ± 15.77 

150 

92.51 ± 24.15 

135 

81.98 ± 9.50 

145 

57.59 ± 10.80 

150 

92.31 ± 10.28 

150 

92.74 ± 10.91 

135 

6 84.55 ± 8.92 

150 

89.46 ± 12.61 

150 

83.90 ± 12.09 

140 

64.67 ± 16.09 

150 

93.79 ± 24.39 

135 

84.55 ± 8.90 

150 

58.40 ± 8.66 

150 

93.85 ± 10.61 

150 

93.90 ± 10.08 

140 

Fig. 9. Sample images on Binary database. 

Fig. 10. Sample images on Pavia University dataset. (a) three-feature color compos- 

ite image. (b) Ground truth: asphalt, meadows, gravel, trees, painted metal sheets, 

bare soil, bitumen, self- blocking bricks, and shadows. 
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On Binary alpha dataset, l(l = 10 , 15 , 20) samples of each class

are randomly selected to form the training set while the remaining

images are used for testing. The recognition rate of different meth-

ods versus the variation of dimension is shown in Fig. 8 . (b) with

l = 20 . Table 4 lists the best performance and the corresponding

dimension as well as standard deviation of different methods. 

On PaviaU dataset, l(l = 5 , 7 , 9) images of each class are ran-

domly selected as the training while the rest images compose the
Table 4 

Best recognition rate, standard deviation and the corresponding feature dimensions of dif

Training 

samples PCA LPP OLPP FOLPP SLE 

10 64.31 ± 12.98 

26 

61.48 ± 11.98 

35 

63.41 ± 12.30 

46 

48.94 ± 9.17 

24 

63.2

48 

15 68.07 ± 13.70 

42 

67.40 ± 12.97 

36 

67.95 ± 13.06 

39 

52.56 ± 9.75 

26 

68.3

48 

20 70.28 ± 14.07 

33 

70.23 ± 13.55 

30 

70.48 ± 13.37 

43 

57.24 ± 11.19 

28 

70.8

48 
esting set. The recognition rate versus the dimensionality reduc-

ion is demonstrated in Fig. 11 . (a) with l = 9 . The best recognition

ate versus the dimension and the standard deviation are shown in

able 5 . 

From Fig. 8 . (b) and Table 6 , we can easily know that the pro-

osed method is able to obtain about at least 10% more than all

he comparative methods. Fig. 11 (a) and Table 5 indicate that the

roposed method is also more effective and able to obtain much

igher recognition rate than the comparative methods for hyper-

pectral images. All the results prove the effectiveness of the pro-

osed RJSR in the non-face images. 

.4. The evaluation of robustness 

In order to evaluate the robustness of the proposed method in

he case when face images are corrupted by block or noise, we

onduct a series of experiments on face database. 

1) Images corrupted by gaussian noise 

In this subsection, the gaussian noise is added to all images

ncluding training set and testing set on Yale and ORL database.

igs. 3 (b) and 4 (b) present the facial images corrupted by Gaus-

ian noise on ORL, Yale database, respectively. 

Tables 6 and 7 list the best recognition rate and the correspond-

ng dimension as well as the standard deviation of different meth-

ds. From the results, we can know that the proposed method is

ore robust than other methods in most cases. 

2) Images with random block corruption 

To evaluate the robustness of RJSR in terms of block corrup-

ion, we add random block on each of the facial image with size

 × 5, 10 × 10 and 15 × 15. Fig. 4 . (c) shows the sample images on

ale database with block size 15 × 15. The best performance of the

roposed RJSR and the comparative methods are listed in Table 8 .

igs. 11 (b)–13 demonstrate the convergence curve of RJSR on face

atabase and non-face database, respectively. The experimental re-

ults clearly illustrate the superiority and the fast convergence of

he proposed method. 

Therefore, we can conclude that RJSR is able to perform bet-

er than the locality learning methods (i.e. LPP, OLPP and FOLPP),

he sparse graph embedding methods (i.e. SLE and JELSR) in most

ases of our experiments. 
ferent algorithms on binary datasets. 

JELSR LPP-L1 

Method in 

[32] RJSR 

0 ± 16.20 64.30 ± 15.19 

27 

59.20 ± 13.08 

49 

64.26 ± 15.12 

47 

72.27 ± 9.38 

49 

1 ± 18.69 68.19 ± 16.92 

34 

64.47 ± 14.69 

32 

68.78 ± 16.59 

49 

78.65 ± 9.17 

48 

8 ± 20.36 70.31 ± 17.31 

39 

66.93 ± 14.96 

45 

71.43 ± 17.50 

47 

83.51 ± 5.05 

49 
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Fig. 11. (a) Experimental results on PaviaU dataset ( l = 9). (b) The convergence curve of RJSR on (a) PaviaU database. 

Table 5 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on PaviaU datasets. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

5 60.66 ± 29.19 

20 

54.53 ± 3.40 

30 

60.66 ± 4.71 

30 

56.94 ± 4.92 

3 

60.67 ± 6.88 

29 

60.66 ± 4.93 

30 

58.19 ± 3.50 

7 

61.69 ± 4.42 

30 

63.19 ± 2.45 

15 

7 60.07 ± 0.33 

11 

57.08 ± 5.07 

27 

60.07 ± 5.11 

30 

55.93 ± 4.21 

3 

60.61 ± 7.24 

28 

60.08 ± 4.35 

23 

57.35 ± 3.37 

3 

61.98 ± 4.18 

14 

62.32 ± 2.90 

28 

9 63.33 ± 0.76 

12 

63.65 ± 3.48 

30 

63.32 ± 4.80 

30 

58.38 ± 4.60 

3 

63.65 ± 9.10 

28 

63.32 ± 5.30 

28 

59.79 ± 6.30 

8 

65.02 ± 5.76 

30 

65.98 ± 3.73 

14 

Table 6 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on ORL datasets with Gaussian noise. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

4 86.50 ± 8.83 

10 

70.33 ± 8.15 

10 

82.54 ± 25.51 

20 

71.62 ± 7.31 

8 

72.87 ± 10.96 

29 

86.25 ± 8.57 

7 

80.88 ± 10.08 

25 

87.67 ± 18.36 

30 

87.67 ± 14.25 

30 

5 90.40 ± 9.20 

10 

81.55 ± 9.57 

11 

89.25 ± 21.57 

18 

75.30 ± 8.04 

7 

82.30 ± 12.23 

15 

90.00 ± 9.06 

9 

87.90 ± 11.70 

30 

91.90 ± 19.27 

30 

92.25 ± 17.78 

28 

6 93.06 ± 10.41 

21 

88.00 ± 9.50 

16 

92.31 ± 12.15 

23 

77.56 ± 8.49 

6 

88.50 ± 12.18 

15 

91.75 ± 10.21 

30 

88.81 ± 11.51 

28 

93.94 ± 18.68 

29 

94.13 ± 18.12 

29 

Table 7 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on Yale datasets with Gaussian noise. 

Training 

samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

4 90.00 ± 13.20 

19 

71.90 ± 12.77 

22 

80.10 ± 17.09 

22 

75.33 ± 11.51 

11 

87.14 ± 11.37 

39 

89.90 ± 13.20 

22 

54.38 ± 8.47 

9 

93.52 ± 17.43 

39 

94.00 ± 14.13 

39 

5 90.11 ± 12.55 

15 

77.89 ± 13.24 

16 

85.78 ± 18.59 

25 

77.89 ± 10.57 

17 

87.89 ± 10.91 

19 

89.89 ± 12.41 

18 

58.22 ± 7.18 

9 

93.78 ± 17.56 

37 

94.00 ± 13.81 

33 

6 92.27 ± 13.01 

22 

86.13 ± 14.26 

16 

90.53 ± 19.32 

20 

82.27 ± 12.85 

11 

91.07 ± 11.87 

16 

91.73 ± 12.78 

16 

87.07 ± 13.49 

39 

95.33 ± 14.09 

38 

96.27 ± 13.84 

36 

5
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.5. Experimental results and discussions 

According to the experimental results of the proposed method

nd the comparative methods on face databases and the Binary al-

ha database as well as the hyperspectral database, we have the

ollowing interesting points: 

1) RJSR obtains the best performance in almost all experiments.

The potential reason for this phenomenon is that RJSR consid-

ers the locality of the original data, the orthogonality and the

joint sparsity of projections. Based on the groundwork, it can
obtain more discriminative information for effective feature se-

lection and extraction. 

2) Although RJSR and OLPP as well as FOLPP take both of local-

ity and orthogonality of the projection direction into consider-

ation, RJSR surpass the other two methods in most cases. One

reason is that RJSR utilizes the joint L 2, 1 -norm on the regular-

ization term to perform jointly sparse feature selection for ef-

ficient pattern recognition or classification. The other reason is

that the added noise has heavy impact on the FOLPP algorithm,

leading to low recognition rates in all the databases. 

3) Moreover, since RJSR uses L 2, 1 -norm instead of L 2 -norm as the

basic measurement on the loss function, it is less sensitive to
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Table 8 

Best recognition rate, standard deviation and the corresponding feature dimensions of different algorithms on Yale datasets with gaussian noise and block cover. 

Block 

Size 

Training 

Samples PCA LPP OLPP FOLPP SLE JELSR LPP-L1 

Method in 

[32] RJSR 

5 ∗5 4 88.67 ± 13.31 

21 

70.29 ± 12.63 

22 

88.57 ± 30.37 

25 

72.86 ± 10.38 

13 

88.29 ± 13.18 

39 

88.00 ± 13.35 

32 

61.57 ± 6.58 

8 

92.76 ± 20.25 

39 

93.43 ± 16.17 

38 

5 90.56 ± 14.00 

23 

81.22 ± 13.67 

24 

90.19 ± 26.68 

26 

72.56 ± 10.90 

12 

91.11 ± 14.01 

28 

90.00 ± 13.84 

21 

71.78 ± 7.25 

8 

91.22 ± 17.62 

39 

93.89 ± 15.99 

35 

6 92.53 ± 14.65 

20 

87.87 ± 16.52 

23 

89.67 ± 19.61 

28 

79.73 ± 13.42 

14 

93.20 ± 14.05 

24 

91.07 ± 14.45 

26 

85.60 ± 14.66 

32 

93.20 ± 15.40 

39 

95.60 ± 14.95 

37 

10 ∗10 4 74.76 ± 14.05 

22 

50.19 ± 9.13 

8 

66.83 ± 23.00 

25 

53.43 ± 7.94 

13 

74.86 ± 11.45 

39 

73.81 ± 13.92 

31 

59.14 ± 4.77 

6 

84.67 ± 17.64 

40 

87.71 ± 16.52 

38 

5 80.22 ± 15.42 

26 

65.44 ± 13.28 

18 

73.97 ± 22.97 

27 

58.67 ± 9.00 

15 

79.11 ± 13.29 

27 

78.22 ± 15.60 

34 

62.22 ± 4.97 

7 

89.33 ± 18.54 

32 

89.44 ± 15.87 

33 

6 82.80 ± 15.95 

37 

77.60 ± 14.06 

20 

82.10 ± 17.81 

28 

64.40 ± 11.51 

12 

83.47 ± 13.07 

39 

82.13 ± 15.80 

34 

73.20 ± 13.45 

27 

91.87 ± 17.88 

37 

92.00 ± 16.16 

33 

15 ∗15 4 61.90 ± 12.04 

40 

46.57 ± 8.51 

31 

51.16 ± 20.56 

25 

38.38 ± 6.10 

17 

64.10 ± 12.26 

39 

61.90 ± 12.16 

40 

52.90 ± 2.30 

5 

82.00 ± 18.46 

40 

79.81 ± 17.41 

37 

5 64.67 ± 14.07 

35 

55.56 ± 10.28 

27 

61.11 ± 18.27 

29 

44.33 ± 6.79 

18 

67.67 ± 13.34 

35 

64.00 ± 14.30 

38 

57.78 ± 3.10 

8 

84.44 ± 18.08 

39 

83.89 ± 18.04 

35 

6 67.07 ± 15.24 

31 

61.73 ± 12.64 

23 

66.67 ± 16.00 

30 

45.73 ± 6.43 

14 

72.40 ± 14.69 

39 

67.73 ± 15.29 

33 

59.33 ± 12.50 

35 

86.80 ± 18.68 

40 

87.33 ± 16.19 

32 
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outliers. The elastic factor on the loss function also avoids the

overfitting in the regression model and the experimental results

on face images corrupted with noise or block prove the robust-

ness and flexibility of RJSR. 

4) As shown in Fig. 8 . (b), the curve of the recognition rate

keeps growing more than 36 dimensions, which means that

RJSR breaks through the small-class problem and obtains more

than 36 (the number of class) projections to perform effective

feature selection. The conclusion also agrees with the results

shown in Table 4 . 

5) All the experimental results show that the method in [32] and

the proposed RJSR can obtain better performance than other

comparative methods. The potential reason is that they both

use L 2, 1 -norm as the basic measurement and consider the

overfitting problem. However, RJSR outperforms the method in

[32] in most cases. That is because RJSR can obtain orthogonal-

ity property of the projection and simultaneously preserve the

neighborhood structure of the data. 

. Conclusion 

In this paper, we propose a robust jointly sparse regression for

ffective f eature selection. By combining the locality of the mani-

old structure of the original data, the orthogonality and the joint

parsity of the projection, RJSR is able to obtain more discrimi-

ative information for image recognition or classification tasks. In
ddition, RJSR can also release the small-class problem to obtain

ore projections via the designed loss function. The proposed op-

imization problem can be solved by an iterative algorithm. The

heoretical analysis including the convergence of the proposed al-

orithm and the computational complexity are presented. Exper-

ments on face images, hyperspectral images and digits and let-

ers images are conducted to evaluate the performance of RJSR.

he experimental results indicate that RJSR can outperform the lo-

ality based methods (LPP, OLPP, FOLPP), the joint sparsity learn-

ng methods (JELSR) and the L 1 -norm based methods (SLE, LPP-L1)

ith strong robustness. 

The proposed RJSR is an iteration algorithm and the computa-

ional complexity is higher than the traditional methods, such as

CA, LPP and RR. Therefore, it would be meaningful to reduce the

omputation cost of RJSR. 
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Appendix 

Proof of Theorem 2. In (20) , suppose the SVD of S is S = 

	 

U 

	 

D 

	 

U 

T 

, then we have the following equality 

tr 
(
M 

T X 

T SXM − 2 M 

T X 

T Y 

)
= tr 

⎛ 

⎝ M 

T X 

T 

(
	 

D 

1 / 2 	 

U 

T 
)T (

	 

D 

1 / 2 	 

U 

T 
)

XM − 2 M 

T X 

T 

(
	 

D 

1 / 2 	 

U 

T 
)T 

( (
	 

D 

1 / 2 	 

U 

T 
)T 

) −1 

Y 

⎞ 

⎠ 

(29) 

From (29) , we have 

∥∥∥∥∥∥
( (

	 

D 

1 / 2 	 

U 

T 
)T 

) −1 

Y −
(

	 

D 

1 / 2 	 

U 

T 
)

XM 

∥∥∥∥∥∥
2 

2 

= tr 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 

T 

(
	 

D 

1 / 2 	 

U 

T 
)−1 (

	 

D 

1 / 2 	 

U 

T 
)−T 

Y − 2 M 

T X 

T 

(
	 

D 

1 / 2 	 

U 

T 
)T 

( (
	 

D 

1 / 2 	 

U 

T 
)T 

) −1 

Y 

+ M 

T X 

T 

(
	 

D 

1 / 2 	 

U 

T 
)T (

	 

D 

1 / 2 	 

U 

T 
)

XM 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(30) 

Since Y 

T ( 
	 

D 

1 / 2 	 

U 

T 

) −1 ( 
	 

D 

1 / 2 	 

U 

T 

) −T Y is a constant term and it can be ignored. From (29) and (30) , we can know that the optimal solution 

in (20) is equal to that in (21) . That is, 

min 

M 

∥∥∥∥∥∥
( (

	 

D 

1 / 2 	 

U 

T 
)T 

) −1 

Y −
(

	 

D 

1 / 2 	 

U 

T 
)

XM 

∥∥∥∥∥∥
2 

2 

⇔ min 

M 

tr 
(
M 

T X 

T SXM − 2 M 

T X 

T Y 

)
�

Proof of Theorem 3. We define the objective function in (13) as F (A , ̄B , h , D , D̄ ) for simplicity. Since at the (t − 1) -th iteration, 

A t−1 , ̄B t−1 , h t−1 , D t−1 and D̄ t−1 are obtained, according to (15) , we have 

F 
(
A t−1 , ̄B t−1 , h t , D t−1 , D̄ t−1 

)
≤ F 

(
A t−1 , ̄B t−1 , h t−1 , D t−1 , D̄ t−1 

)
(31) 

As shown in (19) , A t can be obtained by singular value decomposition of ( h t 1 
T − Y 

T ) D t−1 XC ̄B t−1 , the objective function value will be 

further decreased, then it goes 

F 
(
A t , ̄B t−1 , h t , D t−1 , D̄ t−1 

)
≤ F 

(
A t−1 , ̄B t−1 , h t−1 , D t−1 , D̄ t−1 

)
(32) 

From (26) , B̄ t can be obtained by the approach of OMP, we have 

F 
(
A t , ̄B t , h t , D t−1 , D̄ t−1 

)
≤ F 

(
A t−1 , ̄B t−1 , h t−1 , D t−1 , D̄ t−1 

)
(33) 

Since A t , ̄B t , h t were obtained, we have the following inequality from (13) 

t r 
(
L T t D t−1 L t 

)
+ αt r 

(
B̄ 

T 
t C 

T D̄ t−1 C ̄B t 

)
≤ t r 

(
L T t−1 D t−1 L t−1 

)
+ αt r 

(
B̄ 

T 
t−1 C 

T D̄ t−1 C ̄B t−1 

)
(34) 

where L t = XC ̄B t A 

T 
t + 1h 

T 
t − Y , L t−1 = XC ̄B t−1 A 

T 
t−1 + 1h 

T 
t−1 − Y . 

From the definition of D and D̄ in (10) , (9) , we have 

∑ 

i 

∥∥L i t 
∥∥2 

2 

2 

∥∥L i t−1 

∥∥
2 

+ α
∑ 

i 

∥∥( CB ) 
i 
t 

∥∥2 

2 

2 

∥∥( CB ) 
i 
t−1 

∥∥
2 

≤
∑ 

i 

∥∥L i t−1 

∥∥2 

2 

2 

∥∥L i t−1 

∥∥
2 

+ α
∑ 

i 

∥∥( CB ) 
i 
t−1 

∥∥2 

2 

2 

∥∥( CB ) 
i 
t−1 

∥∥
2 

(35) 

According to Lemma 1 , we have 

∑ 

i 

∥∥L i t 
∥∥

2 
−

( ∑ 

i 

∥∥L i t 
∥∥

2 
−

∑ 

i 

∥∥L i t 
∥∥2 

2 

2 

∥∥L i t−1 

∥∥
2 

) 

+ α
∑ 

i 

∥∥( CB ) 
i 
t 

∥∥
2 

− α

( ∑ 

i 

∥∥( CB ) 
i 
t 

∥∥
2 

−
∑ 

i 

∥∥( CB ) 
i 
t 

∥∥2 

2 

2 

∥∥( CB ) 
i 
t−1 

∥∥
2 

) 

≤
∑ 

i 

∥∥L i t−1 

∥∥
2 

−
( ∑ 

i 

∥∥L i t−1 

∥∥
2 

−
∑ 

i 

∥∥L i t−1 

∥∥2 

2 

2 

∥∥L i t−1 

∥∥
2 

) 

+ α
∑ 

i 

∥∥( CB ) 
i 
t−1 

∥∥
2 

− α

( ∑ 

i 

∥∥( CB ) 
i 
t−1 

∥∥
2 

−
∑ 

i 

∥∥( CB ) 
i 
t−1 

∥∥2 

2 

2 

∥∥( CB ) 
i 
t−1 

∥∥
2 

) 

(36) 

According to Lemma 2 , it goes ∑ 

i 

∥∥L i t 
∥∥

2 
+ α

∑ 

i 

∥∥( CB ) 
i 
t 

∥∥
2 

≤
∑ 

i 

∥∥L i t−1 

∥∥
2 

+ α
∑ 

i 

∥∥( CB ) 
i 
t−1 

∥∥
2 

(37) 

From the definition of L 2 , 1 -norm shown in (4) , we finally have 

‖ 

L t ‖ 2 , 1 + α
∥∥C ̄B t 

∥∥
2 , 1 

≤ ‖ 

L t−1 ‖ 2 , 1 + α
∥∥C ̄B t−1 

∥∥
2 , 1 

(38) 

Namely, 

F ( A t , ̄B t , h t , D t , D̄ t ) ≤ F ( A t−1 , ̄B t−1 , h t−1 , D t−1 , D̄ t−1 ) (39) 

From (39) , we can conclude that the objective function in (8) will monotonically decrease and the proposed Algorithm 2 will finally 

obtain the optimal solution. �
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