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A B S T R A C T

Personalized outfit compatibility learning is an emerging yet challenging task. Most of the existing methods
focus on general outfit compatibility learning. Although a few works have been proposed for personalized
fashion compatibility, they either considered user preference on fashion items with specific patterns or design
elements or recommended outfits based on the overall visual similarity according to the users’ preferred
collections. This paper adopts physical and fashion attributes for effective personalized fashion compatibility
evaluation and recommendation. The physical attributes are concluded into seven aspects: body shape, skin
color, hairstyle, hair color, height, breast size (breasts), and color contrast. The personalized outfit compatibility
problem in this paper is a multi-label classification problem and formulated as an optimization function with
outfit images, fashion attributes, and physical attributes as input. It is the first attempt to solve the problem
by discovering the correlation between visual image features, fashion attributes, and physical attributes.
Specifically, the correlation is learned with two transformer encoders by updating attention weights of different
embedding pairs during the training process. The model can not only predict the fashion attributes of the
outfit’s top, bottom, shoes, and bag items, but also predict the incompatible physical attributes of an individual
towards the given outfit. It can be used to recommend outfits that best fit an individual and the predicted
fashion attributes can be used for result explanation. The O4U dataset, which contains rich annotations of
fashion item attributes and human physical attributes of the outfits, is used to evaluate the performance of
the proposed method. The quantitative and qualitative results show that the proposed method outperforms
state-of-the-art methods for personalized outfit compatibility evaluation.
1. Introduction

Personalized outfit compatibility learning has been recently attract-
ing more attention from the academic and industrial communities.
Most research focuses on general fashion compatibility, which is about
the compatibility learning among several fashion items within an out-
fit (Guan et al., 2022, 2021). The methods either learn a compatibility
score of the outfit by computing average compatibility probability
among different items in the outfit (Cui et al., 2019; Vasileva et al.,
2018), or try to reason the evaluation results with inexplicit or pre-
defined fashion factors (Mo et al., 2022; Tan et al., 2019). The existing
personalized fashion recommendation works can be divided into two
categories: one is to recommend fashion items via highlighting patterns
or designs related to the user preference (Chen, Chen, et al., 2019); the
other is to recommend fashion outfits based on the visual similarity of
the outfits according to the user’s preference (Zhan & Lin, 2021).

Despite the effectiveness of these methods, the personalized rec-
ommendation for an individual needs to be more consistent with the
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human sense. For example, when we browse large amounts of outfits
on an online shopping platform, we expect to efficiently find the outfit
that is not only compatible but also the most suitable for our physical
appearance. Thus, this paper proposes considering the outfit com-
patibility towards individual physical characteristics for personalized
outfit recommendations. This is actually an outfit-user compatibility
learning problem regarding the compatibility between a set of com-
patible fashion items and certain personalized physical attributes. The
personalized physical attributes are considered from 7 aspects: body
figure, skin color, hairstyle, hair color, height, breast size (breast), and
color contrast, and each aspect has corresponding detailed attributes.
The idea is consistent with human aesthetics on the compatibility of
an outfit and an individual. As an example in Fig. 1, given an outfit
with certain fashion items (top, bottom, shoes, and bag in this case),
fashion lovers who have high requirements on their look usually make
a decision on buying the outfit by evaluating the overall compatibility
of the outfit with their physical information. We use the body figure as
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Fig. 1. Illustration of application scenarios of the proposed model.

an example to analyze the compatibility in the figure. Our brain tends
to intuitively perceive the outfit compatibility on the fashion attributes
like pattern, color, silhouette, or even more abstract elements (design
and styles). Even though the process of aesthetic perception is hard to
illustrate, we can still find some rules to train an intelligent evaluation
model for personalized compatibility evaluation. For the outfit in Fig. 1,
we can recognize the fashion attributes for each item and evaluate the
compatibility with different body figures. Intuitively, the top item with
a square neckline, puff sleeve shape, H silhouette, and ruffle design
tends to have high requirements on the upper body, while the bottom
item with an A silhouette tends to be more friendly to different types
of the lower body. Also, the shoes with round-toe boxes and high heels
tend to be more suitable for slim legs. Thus, a person with a body figure
of round, inverted triangle, or diamond is suggested to avoid choosing
such kinds of outfits.

This paper attempts to evaluate an outfit’s compatibility with the
consideration of detailed individual physical attributes. To deal with
this problem, we need to consider the following challenges: (1) lack
of informative supervision. In the literature, there is no outfit dataset
that contains rich physical label annotations and fashion attribute
annotations on each outfit; (2) difficulties in selecting an effective
framework for discovering the correlation among outfit visual features
and fashion item attributes towards physical attributes. For a given
outfit, an ideal framework is expected to learn the potential correla-
tion between outfit compatibility and individual physical attributes.
To address the above issues, we propose to use the outfit dataset
(O4U dataset) (Kaicheng Pang, 2022) on which the fashion items of
top, bottom, shoes, and bag are annotated with professional fashion
attributes, and the outfits are labeled with detailed physical attributes
from 7 aspects, namely, body figure, skin color, hairstyle, hair color,
height, breast size (breast), color contrast. To discover the compatibility
with the learned visual features and fashion attribution embeddings,
we propose a new framework based on transformer encode, which
has been successfully employed in learning the relationship among
different visual regions in general multi-label classification tasks (Han
2

et al., 2021; Yuan et al., 2021). The contributions of the paper can be
concluded as below

(1) The proposed method is the first to consider the outfit compati-
bility towards individual physical attributes and fashion item attributes,
which is consistent with human aesthetics on finding the most suitable
outfits for personalized information.

(2) The transformer encoder explores the correlation among visual
features, fashion attributes and physical attributes. The model can
predict the personalized outfit compatibility with fashion attribute
prediction as a potential explanation.

(3) Experimental results on the O4U dataset demonstrate the su-
periority of the proposed method for personalized outfit compatibility
prediction compared with the state-of-the-art methods.

2. Related works

In this section, we will introduce more details about personalized
fashion compatibility learning and the related applications.

2.1. Personalized fashion compatibility

General outfit compatibility learning is to predict if a given outfit
with certain fashion items is well matched by giving an explicit com-
patibility score, while personalized fashion compatibility needs to not
only ensure that fashion items in an outfit are compatible with each
other but also guarantee that the outfit fits an individual’s preference.

The existing personalized fashion compatibility learning methods
can be divided into item-level and outfit-level methods. The item-
level methods mainly model personalized fashion compatibility by
discovering user preferences via visual features or text information
supervision. Chen et al. proposed a multi-modal attention network for
fashion item recommendation with review information as the guidance
of users’ interest learning (Chen, Chen, et al., 2019). The method
divides a fashion image into regions and employs an attention model
to weight the regions with review information as the supervision to
discover users’ preferences. Despite its effectiveness, the model may
perform poorly when the text information is not representative of
the users’ preferences. Hu et al. proposed applying user–item pairs to
discover the users’ interest in different items. Unlike many methods
that use metric learning to measure the pairwise fashion compatibil-
ity, this method used inner product for compatibility calculation (Hu
et al., 2015). Furthermore, The item–item and user–item interactions
are characterized by a matrix factorization method in Song et al.
(2019). Lu et al. proposed a hashing method to learn binary codes for
user and item representations to release the efficiency problem in the
recommendation process (Lu et al., 2019).

The outfit-level methods conduct personalized fashion compatibility
recommendation by treating the outfit as a whole and learning the
potential compatibility inexplicitly. The Personalized Outfit Generation
(POG) model in Chen, Huang, et al. (2019) suggested that a user
should have similar tastes in fashion items and outfits, and user prefer-
ence should be considered as the connection between the items and
the outfits. The model applied transformer architecture to learn the
user’s interest regarding the user clicked items and outfits. Zhan et al.
proposed a Personalized Attention Network (PAN) for personalized
outfit recommendation with a user encoder, an item encoder, and a
preference predictor as the key component in the framework (Zhan
& Lin, 2021). The method also applied the attention network that
composed of a sequential user-aware channel-level and spatial-level
sub-modules to discover the users’ preferences towards fashion items.
Additionally, a user-specific ranking loss was proposed to capture the
interest of different users in the same outfit.

In summary, the existing personalized compatibility methods mainly
learn user preferences from visual fashion preferences on individual
fashion items or the whole outfit. They do not take the individual
physical information into consideration to recommend the outfits that
can fit the individual most.
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2.2. Emerging applications and datasets

Dressing with compatibility of physical characteristics and outfits
is more than just the clothing; it is about how the fashion lovers
carry themselves to reflect their attitudes and preference. Compati-
bility learning has been studied in different scenarios in the fashion
community. Wang et al. proposed to evaluate the outfit compatibility
among items within the same outfit, and diagnose the problematic
items via backpropagation gradient comparison, as well as recommend
the substitutes with high compatibility score (Wang et al., 2019). Sev-
eral recent works studied the compatibility of outfits/dresses towards
different body shapes. Hidayati et al. proposed the first framework for
considering fashion compatibility of clothing styles and body shapes
from social big data (Hidayati et al., 2018). The goal is to recommend
a user with clothing that fits his/her body shape best. Later, they
proposed to learn the correlation between joint deep embeddings of
clothing styles and body shapes. Female body shapes can be measured
via proportion calculation in the proposed framework, and the fashion
knowledge from social big data is utilized to learn the golden styles for
an intelligent recommendation of dresses for different body types (Hi-
dayati et al., 2020). All the methods consider fashion compatibility
based on a single fashion item or dress and body shape, which is one
of the individual physical aspects. More complicated fashion combina-
tions and more complete physical attributes should be considered for
practical use in personalized outfit recommendations.

To our knowledge, many types of datasets exist for fashion com-
patibility learning. They can be categorized as general outfit datasets
containing outfit images with or without text descriptions and per-
sonalized outfit datasets containing user preference information. The
general outfit datasets mainly include WoW (Liu et al., 2012), Fash-
ionVC (Song et al., 2017), Maryland Polyvore (Han et al., 2017),
UIUC Polyvore (Vasileva et al., 2018), Polyvore-T (Wang et al., 2019)
and Evaluation3 (Zou et al., 2020). The personalized outfit datasets
mainly include Style4BodyShape (Hidayati et al., 2018), StyleRef. (Hi-
dayati et al., 2020), POG (Chen, Huang, et al., 2019) and Polyvore-U
(Polyvore-630, Polyvore-519) (Lu et al., 2019). This paper will use the
O4U dataset on which the fashion items are annotated with rich fashion
attributes, and the outfits are labeled with complete physical attributes.

3. Methodology

In this section, we first describe the motivation of the paper, then
formulate the research problem and present the details of the proposed
method.

3.1. Motivation

Previous works consider personalized fashion evaluation or rec-
ommendation from different aspects. Some proposed recommending
fashion items by taking the image region-level features and reviewing
information into a multimodal attention network (Chen, Chen, et al.,
2019). The methods can recommend items by highlighting specific
regions of the images as the user preference with weak supervision from
the user review information. Considering the personalized fashion style,
outfit search, and recommendation efficiency issue, Lu et al. proposed
learning binary code for efficient and personalized fashion recommen-
dation (Lu et al., 2019). However, the method fails to capture users’
interest in details, such as logos and patterns. To solve this problem,
Zhan et al. proposed a personalized attention network to integrate
user embedding and item representation to compute the user-aware
attention maps (Zhan & Lin, 2021). These methods were evaluated
on the Polyvore-U benchmark dataset that contains user profiles and
outfits. The personalization of the existing methods is not related to a
user’s physical attributes, while this is general for our human visual
justification for evaluating an outfit for a user with a specific body
3

shape, hair color, skin color, etc.
In addition, the relation between fashion attributes and human
physical attributes is not explored in the existing methods. Although
it may be abstractive when we consider the personalized outfit com-
patibility with fashion attributes and physical attributes, it must have
certain relation as different attributes usually fit different physical
attributes. The transformer has been successfully applied to explore
the attention between different image regions or image-text informa-
tion (Pardo-Sixtos et al., 2022). In this paper, we apply the trans-
former technique and propose a new framework for personalized fash-
ion compatibility learning to explore the relationships among the visual
features, fashion attributes, and physical attributes.

3.2. Problem formulation

The personalized fashion compatibility evaluation problem involves
the fashion item images from different categories, the attribute labels
of fashion items from top, bottom, shoes and bag, and the physical
attribute labels. The purpose is to predict the incompatible physical
attributes and fashion item attributes with given outfits so that a
user can avoid selecting the outfits that do not fit his/her physical
characteristics.

Suppose we have a set of outfits from different categories (i.e. top,
bottom, shoes, bag, accessories, etc.). Let an outfit denoted as 𝑂 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4,… , 𝑥𝑘}, 𝑘 ⩽ 9, where 𝑘 is the number of items in an outfit.
Specifically, the fashion items from the categories of top, bottom, shoes,
and bag are annotated with the corresponding number of attributes,
i.e. 𝑐𝑢 = 91, 𝑐𝑏 = 49, 𝑐𝑠 = 47, 𝑐𝑔 = 42, where 𝑐𝑢, 𝑐𝑏, 𝑐𝑠, 𝑐𝑔 are the numbers
f the attributes of the top, bottom, shoes, and bags. Since the fashion
tem 𝑥𝑖 is attached with a visual image and multi-label description
, we can derive 𝑁 training outfit samples as 𝜔 = {(𝑂𝑖, 𝑦𝑢𝑏𝑠𝑔 , 𝑦𝑖)|𝑖 =
, 2, 3,… , 𝑁}, where 𝑂𝑖 is the 𝑖th outfit and 𝑦𝑖 is the ground truth
abels that indicate the incompatible physical attributes of the outfit,
𝑖 ∈ {0, 1} where 1 represents incompatibility positive while 0 is

incompatibility negative, 𝑦𝑢𝑏𝑠𝑔 is the fashion attribute labels of the top,
bottom, shoes and bag items. Notably, the number of fashion items in
the outfit can be changed. Based on these data, we design a personal-
ized transformer scheme which integrates the visual images and fashion
attributes for personalized compatibility prediction. Mathematically,
we have the following multi-label prediction problem:

𝑦𝑝 =  (𝑜, 𝑦𝑢𝑏𝑠𝑔|𝛩), (1)

where 𝑜 is the visual images of the outfit, 𝑦𝑢𝑏𝑠𝑔 is the attribute labels
of the items, 𝛩 is the set of to-be-learned parameters in the model, 𝑦𝑝
is the estimated one-hot prediction of the outfit, 𝑦𝑝 = {𝑦1, 𝑦2,… , 𝑦𝑐𝑝},
where 𝑦𝑖 ∈ {0, 1} and 𝑐𝑝 = 15 is the physical attribute number.

3.3. The proposed method

The proposed method takes outfit images and the corresponding
attribute annotations as input and explores the relation between fash-
ion attributes and physical attributes. The personalized compatibility
of outfits towards physical attributes is learned and evaluated as a
multi-label classification task as the following.

3.3.1. The proposed framework
The personalized compatibility learning framework is presented in

Fig. 2. The framework comprises three parts: a visual feature extractor,
the first transformer encoder for fashion attribute prediction, and the
second transformer encoder for physical attribute prediction. The visual
feature extractor is based on the Resnet (He et al., 2016) which was
pretrained on ImageNet (Deng et al., 2009). As shown on the left side
of Fig. 2, the fashion items in the outfit are input to the Resnet, and
the feature embeddings are obtained as the representation of the outfit.
Then the attribute label embedding together with the visual feature
embedding are input to the first transformer, and their correlation is

learned for item attribute prediction. The learned visual feature and
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Fig. 2. The personalized compatibility evaluation framework. The framework composes of three parts: The image feature extractor, the first transformer encoder which is for
fashion attribute prediction, and the second transformer encoder which is for physical attribute prediction. {𝑈,𝑁, 𝑃 } denote different states of the label with negative (N), positive
(P), and unknown (U). The multi-label classifier is the feedforward network (FFN). 𝑧, ℎ denote the visual image features learned by the Resnet feature extractor and the first
transformer encoder. 𝑙𝑢 , 𝑙𝑏 , 𝑙𝑠 , 𝑙𝑔 denote the initial fashion attribute embeddings of top, bottom, shoes and bag while 𝑙′𝑢 , 𝑙

′
𝑏 , 𝑙

′
𝑠 , 𝑙

′
𝑔 denote the fashion attribute embeddings after the first

transformer encoder. 𝑙𝑝 is the initial physical attribute embeddings while 𝑙′𝑝 is the physical attribute embeddings after the second transformer encoder. 𝑦𝑢 , 𝑦𝑏 , 𝑦𝑠 , 𝑦𝑔 are the multi-label
prediction of fashion attributes of top, bottom, shoes and bag, 𝑦𝑝 is the multi-label prediction of physical attributes. 𝐿𝑆 is the label smoothing loss function. 𝐿𝑢 , 𝐿𝑏 , 𝐿𝑠 , 𝐿𝑔 , 𝐿𝑝 , 𝐿𝑙𝑠
correspond to the loss components of the objective function in Eq. (25).
attribute embeddings from the first transformer encoder as well as the
initial physical attribute embeddings are fed to the second transformer
for personalized compatibility prediction.

The proposed framework can be applied to many practical scenar-
ios. However, directly applying it without pre-training to a specific case
may obtain unexpected performance due to the domain gap. Thus it is
suggested to finetune the framework with related data first. In the sce-
nario of recommendation, given a set of outfit images, the framework
can automatically recognize the fashion attributes of different items and
the physical attributes that are compatible with the outfit. So when an
individual inputs his/her personal physical information to the system,
the framework can recommend a set of outfits that are compatible with
the personalized information. Further, the individual can select his/her
preferred fashion attributes, then the system can recommend the outfits
that fulfill the requirement.

Fashion item embedding Given an outfit with four fashion items
(i.e., 𝑥𝑢, 𝑥𝑏, 𝑥𝑠, 𝑥𝑔 corresponding to the items of top, bottom, shoes, bag),
the feature extractor can represent each item with a tensor 𝑍 ∈ 𝑅𝑤×ℎ×𝑑 ,
where 𝑤, ℎ, 𝑑 are the width, height, and channel of the output. The 3D
tensor can be transformed to 2D embeddings with the size of 𝑝 × 𝑑,
where 𝑝 = 𝑤 × ℎ. Then we have outfit embeddings as 𝑜 ∈ 𝑅4𝑝×𝑑 , where
each 1D vector 𝑣 ∈ 𝑅1×𝑑 from 𝑜 is the representation of a sub region
that can map back to the patches in the original image space.

Fashion attribute embedding We denote the attribute embeddings
of top, bottom, shoes, and bag as 𝑙𝑢 = {𝑙1, 𝑙2,… , 𝑙𝑐𝑢}, 𝑙𝑏 = {𝑙1, 𝑙2,… , 𝑙𝑐𝑏},
𝑙𝑠 = {𝑙1, 𝑙2,… , 𝑙𝑐𝑠} and 𝑙𝑔 = {𝑙1, 𝑙2,… , 𝑙𝑐𝑔 }, 𝑙𝑖 ∈ 𝑅𝑑 . The label embed-
dings represent the possible labels of the actual one-hot labels that
are learned from the corresponding embedding layers of the size of
𝑑 × 𝑐𝑢, 𝑑 × 𝑐𝑏, 𝑑 × 𝑐𝑠, 𝑑 × 𝑐𝑔 , respectively.

Similar to the mask embedding strategy in Lanchantin et al. (2021),
the state embeddings are incorporated into the label embeddings to
obtain the masked label embeddings as

𝑙𝑖 = 𝑙𝑖 + 𝑠𝑖, (2)

where 𝑠𝑖 ∈ 𝑅𝑑 is the state embedding of the label 𝑙𝑖, and 𝑠𝑖 comes from
the possible states: negative (N), positive (P), and unknown (U). The
state embeddings are learned from the learnable embedding layer with
a size of 𝑑 × 3. With the state embedding, the label information can
be fully or partially considered during the training stage by controlling
the ratio of the labels with P or 𝑁 state via label mask training. The
known labels are randomly selected from the training sets, and the ratio
is within {0, 0.75} while the unknown labels are within {0.25, 1}. The
masked label embeddings are obtained for the known labels based on
the initial label embeddings and the corresponding ground truth state
4

embeddings. The binary cross entropy is employed to compute the dif-
ference between the ground truths and the predicted fashion attributes.
Then, we can have the binary cross entropy losses of 𝑢,𝑏,𝑠,𝑔 as

𝑢 =
𝑁
∑

𝑛=1
𝐸𝑢
(𝑦𝑘)

{𝐶𝐸(𝑙𝑛, 𝑦𝑛)|𝑦𝑘}, (3)

𝑏 =
𝑁
∑

𝑛=1
𝐸𝑏
(𝑦𝑘)

{𝐶𝐸(𝑙𝑛, 𝑦𝑛)|𝑦𝑘}, (4)

𝑠 =
𝑁
∑

𝑛=1
𝐸𝑠
(𝑦𝑘)

{𝐶𝐸(𝑙𝑛, 𝑦𝑛)|𝑦𝑘}, (5)

𝑔 =
𝑁
∑

𝑛=1
𝐸𝑔
(𝑦𝑘)

{𝐶𝐸(𝑙𝑛, 𝑦𝑛)|𝑦𝑘}, (6)

where 𝐸𝑢
(𝑦𝑘)

{⋅|𝑦𝑘}, 𝐸𝑏
(𝑦𝑘)

{⋅|𝑦𝑘}, 𝐸𝑠
(𝑦𝑘)

{⋅|𝑦𝑘}, 𝐸
𝑔
(𝑦𝑘)

{⋅|𝑦𝑘} denote the expec-
tation of fashion attributes regarding the probability distribution of
known labels 𝑦𝑘 of the fashion items of top, bottom, shoes and bag.
𝐶𝐸(⋅) is the binary cross entropy loss function as

𝐶𝐸(𝑙, 𝑦) = −𝑤𝑛,𝑐[𝑝𝑐𝑦𝑛,𝑐 ⋅ 𝑙𝑜𝑔𝜎(𝑙𝑛,𝑐)
+(1 − 𝑦𝑛,𝑐 ) ⋅ 𝑙𝑜𝑔(1 − 𝜎(𝑙𝑛,𝑐 ))],

(7)

where 𝑤𝑛,𝑐 is the weight for the 𝑛th image/outfit corresponding to the
𝑐th class, 𝑝𝑐 is the weight of the positive prediction of the class, and 𝜎(⋅)
is the probability function. Training the model with randomly masked
label embeddings can help the model discover potential correlations
among different label combinations and generalize to the prediction
cases with an arbitrary amount of known information.

Physical attribute embedding For an outfit, personalized fashion
compatibility regarding physical attributes predicts a set of labels that
indicate the incompatible physical attributes. The physical attribute
embeddings are denoted as 𝑙𝑝 = {𝑙1, 𝑙2,… , 𝑙𝑐𝑝}, 𝑙𝑖 ∈ 𝑅𝑑 with the size
of 𝑑 × 𝑐𝑝. Similar to the binary cross entropy losses of 𝑢,𝑏,𝑠,𝑔 , the
optimization loss of physical attribute embeddings is

𝑝 =
𝑁
∑

𝑛=1
𝐸𝑝
(𝑦𝑘)

{𝐶𝐸(𝑙𝑛, 𝑦𝑛)|𝑦𝑘}, (8)

where 𝐸𝑝
(𝑦𝑘)

{⋅|𝑦𝑘} is the expectation of physical attributes regarding the
probability distribution of the corresponding known labels.

Transformer encoder Given feature embeddings that are learned
from the feature extractor and the label embeddings that are ran-
domly initialized, the transformer encoder similar to Lanchantin et al.
(2021) is applied to learn the correlations between the features and
label embeddings. The transformer is proved effective and suitable
for capturing the dependencies between the general image features
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and the label embeddings as it is ordered invariant and the weight of
pairwise feature-label embeddings can be learned by the self-attention
mechanism inside (Vaswani et al., 2017).

For the fashion items of top, bottom, shoes and bag in the outfit, we
have the corresponding combined embeddings as

𝐻𝑢 = {𝑧𝑢1, 𝑧
𝑢
2,… , 𝑧𝑢𝑤×ℎ, 𝑙

𝑢
1, 𝑙

𝑢
2,… , 𝑙𝑢𝑐𝑢}, (9)

𝑏 = {𝑧𝑏1, 𝑧
𝑏
2,… , 𝑧𝑏𝑤×ℎ, 𝑙

𝑏
1, 𝑙

𝑏
2,… , 𝑙𝑏𝑐𝑏}, (10)

𝑠 = {𝑧𝑠1, 𝑧
𝑠
2,… , 𝑧𝑠𝑤×ℎ, 𝑙

𝑠
1, 𝑙

𝑠
2,… , 𝑙𝑠𝑐𝑠}, (11)

𝑔 = {𝑧𝑔1 , 𝑧
𝑔
2 ,… , 𝑧𝑔𝑤×ℎ, 𝑙

𝑔
1 , 𝑙

𝑔
2 ,… , 𝑙𝑔𝑐𝑔 }. (12)

or the outfit towards physical attributes, we have

𝑝 = {𝑧𝑝1, 𝑧
𝑝
2,… , 𝑧𝑝𝑤×ℎ, 𝑙

𝑝
1, 𝑙

𝑝
2,… , 𝑙𝑝𝑐𝑝}. (13)

The pair-wise weight of {ℎ𝑖, ℎ𝑗} denoted as 𝑎𝑖,𝑗 can be learned by
elf-attention in the transformer encoder. Specifically, the attention
eight 𝑎𝑡𝑖,𝑗 of the 𝑖th embedding and the 𝑗th embedding at the 𝑡-step

an be obtained with the following procedure:
(1) compute the normalized scalar attention coefficient with

𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑊 𝑞ℎ𝑖)𝑇 (𝑊 𝑘ℎ𝑗 )∕
√

𝑑); (14)

(2) update each embedding ℎ𝑖 to ℎ̄𝑖 with the weighted sum of all
related embeddings via

ℎ̄𝑖 =
𝑀
∑

𝑗=1
𝑎𝑖,𝑗𝑊

𝑣ℎ𝑗 ; (15)

(3) finally obtain the activated embedding ℎ̃𝑖 with

ℎ𝑖 = 𝑅𝑒𝐿𝑈 (ℎ̄𝑖𝑊 𝑟 + 𝑏1)𝑊 𝑜 + 𝑏2, (16)

where 𝑀 is the number of data pairs related to ℎ𝑖, 𝑊 𝑞 ,𝑊 𝑘,𝑊 𝑣 is the
query, key, and value matrices respectively, 𝑊 𝑟,𝑊 𝑜 are transforma-
tion matrices, and 𝑏1, 𝑏2 are bias vectors. The transformer encoder is
composed of 𝐿 layers with the same structures, and each layer has its
respective variables.

The fashion item feature embeddings {𝑧𝑢, 𝑧𝑏, 𝑧𝑠, 𝑧𝑔} and the cor-
responding label embeddings {𝑙𝑢, 𝑙𝑏, 𝑙𝑠, 𝑙𝑔} are fed to the successive
layers of the transformer encoder. The first transformer encoder in the
proposed framework learns the correlation between the fashion items
and the corresponding fashion attributes, and the learned attribute
label embeddings are then fed to the successive classifier for attribute
prediction.

The initial physical label embeddings 𝑙𝑝 and the learned feature
embeddings {ℎ𝑢, ℎ𝑏, ℎ𝑠, ℎ𝑔} as well as the learned attribute label
embeddings {𝑙′𝑢, 𝑙

′
𝑏, 𝑙

′
𝑠, 𝑙

′
𝑔} from the first transformer encoder are stacked

and fed to the second transformer in the proposed framework to learn
the potential dependencies. Finally, the transformed physical label
embeddings are input to the successive classifier for physical label
prediction.

Multi-label classifier As shown in the right-hand side of Fig. 2, the
obtained label embeddings {𝑙′𝑢, 𝑙

′
𝑏, 𝑙

′
𝑠, 𝑙

′
𝑔 , 𝑙

′
𝑝} are fed to the feedforward

network (FFN) for attribute prediction, which can be formulated as

𝑦𝑢𝑖 = FFN𝑢(𝑙′𝑢𝑖 ) = 𝑠(𝑤𝑢
𝑖 ⋅ 𝑙

′𝑢
𝑖 + 𝑏𝑢𝑖 ), (17)

𝑦𝑏𝑖 = FFN𝑏(𝑙′𝑏𝑖 ) = 𝑠(𝑤𝑏
𝑖 ⋅ 𝑙

′𝑏
𝑖 + 𝑏𝑏𝑖 ), (18)

𝑦𝑠𝑖 = FFN𝑠(𝑙′𝑠𝑖 ) = 𝑠(𝑤𝑠
𝑖 ⋅ 𝑙

′𝑠
𝑖 + 𝑏𝑠𝑖 ), (19)

𝑦𝑔𝑖 = FFN𝑔(𝑙
′𝑔
𝑖 ) = 𝑠(𝑤𝑔

𝑖 ⋅ 𝑙
′𝑔
𝑖 + 𝑏𝑔𝑖 ), (20)

𝑦𝑝𝑖 = FFN𝑝(𝑙
′𝑝
𝑖 ) = 𝑠(𝑤𝑝

𝑖 ⋅ 𝑙
′𝑝
𝑖 + 𝑏𝑝𝑖 ), (21)

where 𝑠(⋅) is a sigmoid function and 𝑤𝑖, 𝑏𝑖 is the weight of label 𝑖 with
5

size of 1 × 𝑑 and the corresponding bias.
3.3.2. Online multi-label smoothing
Label smoothing utilizes soft labels generated from a uniform dis-

tribution to take the place of hard labels to reduce the overfitting
problem for model training. It can be used to improve classification
performance, especially under the case when the class label is im-
balanced (Szegedy et al., 2016; Tzelepi et al., 2021). Unlike label
smoothing, which uses a static soft label, Zhang et al. proposed to
use model predictions to continuously update the soft labels during
the training process for single class prediction (Zhang et al., 2021).
In this paper, we propose to exploit model predictions for online
label smoothing for the multi-label prediction case. If the prediction
is correct for a given image, the soft labels corresponding to the target
classes will be updated, and the updated soft labels will be applied to
supervise the training of the model.

For the physical labels, we denote the class number as 𝑐𝑝, suppose
the total training epochs is 𝑇 , then we have the soft labels 𝑆 =
{𝑆0, 𝑆1,… , 𝑆𝑇 }, where 𝑆𝑡 ∈ 𝑅𝑐𝑝×𝑐𝑝 is the soft label for the 𝑡th epoch.
When 𝑡 = 0, the soft label 𝑆𝑡 is initialized as zero matrices. Given the
𝑖th outfit (𝑖 = 1, 2,… , 𝑁), 𝑆𝑡−1

𝑦𝑝𝑖 =𝑦
𝑔𝑡
𝑖

is denoted as the soft label that is
correctly predicted regarding the ground truth label of the outfit, the
training loss of the model supervised by 𝑆𝑡−1

𝑦𝑖
can be formulated as

𝐿𝑙𝑠 = −
𝑁
∑

𝑖=1
𝑆𝑡−1
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖
⋅ log𝑝(𝑖|(𝑦𝑝𝑖 = 𝑦𝑔𝑡𝑖 , 𝑜)), (22)

where 𝑝(𝑖|(𝑦𝑝𝑖 = 𝑦𝑔𝑡𝑖 , 𝑜)) is the prediction score corresponding to the
correctly predicted labels regarding the ground truth labels with the
outfit feature 𝑜. 𝑆𝑡

𝑦𝑝𝑖 =𝑦
𝑔𝑡
𝑖

forms a temporary label distribution to supervise
the model training, and it can be updated by

𝑆𝑡
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖
= 𝑆𝑡−1

𝑦𝑝𝑖 =𝑦
𝑔𝑡
𝑖
+ 𝑝(𝑖|(𝑦𝑝𝑖 = 𝑦𝑔𝑡𝑖 , 𝑜)). (23)

At the end of the 𝑡th training epoch, the cumulative 𝑆𝑡 is normalized
as

𝑆𝑡
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖
=

𝑆𝑡−1
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖

∑𝑁
𝑖=1 𝑆

𝑡−1
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖

. (24)

The normalized soft label 𝑆𝑡
𝑦𝑝𝑖 =𝑦

𝑔𝑡
𝑖

over 𝑁 outfits is obtained and will be
used for supervising the training of the model at the next epoch.

The overall loss is derived from Eqs. (4), (5), (6), (8) and (22), which
is summarized as

 = 𝑢 + 𝑏 + 𝑠 + 𝑔 + 𝑝 + 𝜆𝑙𝑠, (25)

where 𝜆 is a parameter to balance the online multi-label smoothing
loss towards other losses. The parameters of the proposed model can
be optimized via backpropagation in an end-to-end manner.

Although the classification transformer (C-Tran) (Lanchantin et al.,
2021) also uses transformer encoder for class prediction, it is different
from the proposed method. First, C-Tran only considers visual features
for physical compatibility learning while the proposed method jointly
considers the correlation of the visual features, the outfit attributes and
the physical attributes for comprehensive compatibility learning. Mean-
while, the fashion attribute recognition losses are optimized during
the training process, thus the model can learn more effective attribute
featrues for the later physical compatibility learning. Second, the pro-
posed model applies the online multi-label smoothing strategy to deal
with the physical label imbalance problem, by which the prediction
performance can be improved.

4. Experiments

In this section, we conduct extensive experiments to evaluate the
performance of the proposed method by answering the following re-

search questions:
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RQ1: Does the proposed method achieve better performance com-
pared with state-of-the-art methods on personalized compatibility eval-
uation?

RQ2: How is the performance of the proposed method for attribute
prediction?

RQ3: How does the proposed method recognize the fashion at-
tributes with the attention mechanism?

RQ4: How does the proposed method perceive the outfit compati-
bility towards the physical attributes?

RQ5: Can we explore some potential correlations between the fash-
ion attributes and the physical attributes with the proposed method?

RQ6: How is the performance when the proposed method conducts
compatibility evaluation in different cases?

4.1. Experimental design

In this section, the experimental design including implementation
details, the evaluation metrics, the dataset, and the comparison meth-
ods will be introduced.

4.1.1. Implementation details
For a fair comparison, the proposed and compared methods use the

same feature extractor, i.e. Resnet18, Resnet50, and Resnet101 that
were pretrained on ImageNet with corresponding output dimension
𝑑 = 512, 2048, 2048. The size of the input images was cropped and
resized to 112 × 112. The output 3D tensor from the feature extractor
is 7 × 7 × 𝑑, and we can have feature embeddings of each fashion item
as 𝑧 ∈ 𝑅49×𝑑 . The label embeddings also have the same dimension
as the feature embeddings. Specifically, the input embeddings for the
first transformer encoder for top, bottom, shoes, bag fashion attribute
prediction are 𝐻 ′

𝑢 ∈ 𝑅(49+𝑐𝑢)×𝑑 , 𝐻 ′
𝑏 ∈ 𝑅(49+𝑐𝑏)×𝑑 , 𝐻 ′

𝑠 ∈ 𝑅(49+𝑐𝑠)×𝑑 , 𝐻 ′
𝑔 ∈

𝑅(49+𝑐𝑔 )×𝑑 respectively, where 𝑐𝑢, 𝑐𝑏, 𝑐𝑠, 𝑐𝑔 is the corresponding attribute
number. The input embedding for the second transformer encoder is
𝐻 ′

𝑝 ∈ 𝑅(49×𝑘+𝐶𝑝)×𝑑 , where 𝑘 is the number of fashion items in the outfit
and 𝑐𝑝 is the number of the physical attributes.

The number of the attention head and layer of the transformer
encoder is 4 and 3, respectively, which is similar to the previous
works (Lanchantin et al., 2021). The proposed model can be trained
end-to-end, and the variables except the parameter 𝜆 can be optimized
by the backpropagation. In the experiments, the optimizer of the pro-
posed method is SGD with weight decay of 4 × 10−4. The learning rate
is 2×10−4 and the dropout with 𝑝 = 0.1 is used for avoiding overfitting.
The batch size is 16, and the maximum training epoch of all methods
is 50. The parameters of the comparison methods are set as default
according to the original papers. We conducted the experiments on a
desktop PC with OS as Ubuntu 20.04.2 LTS, CPU as Intel(R) Core(TM)
i7-8700K @3.70 GHz with 11 processors and 32 GB memory, GPU as
NVIDIA GTX2080 with 8 GB memory.

4.1.2. Baselines and evaluation metrics
The task of compatibility prediction of an outfit regarding the indi-

vidual physical attributes can be considered as a multi-label classifica-
tion problem. Several relevant state-of-the-art multi-label classification
methods are used for comparison in the experiments. The methods
include classification transformer (C-Tran) (Lanchantin et al., 2021),
Modular Graph Transformer Networks (MGTN) (Nguyen et al., 2021),
Class-specific Residual Attention (CSRA) (Zhu & Wu, 2021), Multi-
class Attentional Regions (MCAR) (Gao & Zhou, 2021), Multi-modal
multi-label recognition (M3TR) (Zhao, Zhao, & Li, 2021), Asymmet-
ric loss for multi-label classification (ASL) (Ridnik et al., 2021), and
Transformer-based dual relation graph (TDRG) (Zhao et al., 2021).

C-Tran is a general framework that exploits the dependencies be-
tween visual features and the labels for multi-label classification prob-
lems. The method first uses a label mask training objective with label
6

states of positive, negative, or unknown for model training. The method c
Table 1
The physical label distribution on O4U dataset.

Aspect Attribute name Frequency of occurrence

Body figure triangle 10,710
spoon 9,058
bottom_hourglass 8,913
top_hourglass 1,486
inverted_triangle 4,620
round 10,116
diamond 9,872
hourglass 20
rectangle 41
athietic 4,407

Skin color yellow 1,886
dark 1,940
fair 247
brown 2,273

Hair style long_curls 11
long_straight_hair 19
middle_long_curls 9
middle_long_straight_hair 18
short_curls 21
short_straight_hair 33

Hair color ginger 721
black 766
dark_brown 239
light_brown 1,404
gray/silver 2,098
golden 36

Height high 2,538
middle 304
low 1,927

Breasts big 4,362
average 4
small 348

Color contrast high 301
low 1,805

is proved to be more general and robust for multi-label classification
when only partial or extra-label annotations are available.

MGTN employs multiple backbones for different sub-graphs derived
from graph transformers and convolutions to learn better representa-
tion for classification performance improvement. The method applies
several strategies to integrate object labels’ semantic and network
properties to the multi-label classification problem.

CSRA applies class-specific residual attention to obtain class-specific
eatures of each category via combining the spatial attention scores
ith the class-agnostic average pooling features. The method can ef-

ectively learn different spatial regions corresponding to objects from
ifferent categories for effective multi-label image classification.
MCAR uses a two-stream framework to distinguish multi-category

bjects of local regions from global images. It aims to use attentional
egions as few as possible and simultaneously keep the diversity of
hese regions as high as possible for efficient and effective multi-class
bject recognition.
M3TR considers the relations of visual structures and multi-modality

nformation for multi-label classification. It combines CNNs and Trans-
ormers to learn the semantic cross-attention to embed visual structures
nto the high-level features for intra-modal relationship learning. It
lso uses a linguistic cross-attention to obtain high-level semantic
epresentation with a linguistic-guided enhancement module to learn
he interactions between the visual and linguistic modalities.
ASL utilizes an asymmetric loss scheme to treat the positive and

egative samples differently to balance the probabilities of different
amples for dealing with the high negative-positive imbalance and
round-truth mislabeling challenges in the multi-label classification
ask.
TDRG proposes a Transformer-based Dual Relation Graph to con-

truct complementary relationships with structural and semantic rela-
ion graphs. It incorporates the relationship into the semantic graph to

onstruct a joint relation graph for feature representation learning.



Expert Systems With Applications 219 (2023) 119632D. Mo et al.

e
p
a
a
F
m

4

p
p
i
r
b
c
t
l

a
t
i
M
t
i
f
p
w
t
p
o

Fig. 3. Original physical label distribution.

Fig. 4. Selected physical label distribution with rate≥ 0.1.

For a fair comparison, the general evaluation metrics (Chen, Wei,
t al., 2019; Ge et al., 2018; Zhu et al., 2017), such as mean average
recision (mAP), average per-class precision (CP), recall (CR), F1 (CF1),
nd the average overall precision (OP), recall (OR), F1 (OF1) and the
verage weighted precision (WP), weighted recall (WR), and weighted
1 (WF1), are employed to evaluate the performance of the proposed
ethod and the comparison methods.

.1.3. Dataset
The O4U dataset (Kaicheng Pang, 2022) is used to evaluate the

erformance of the proposed method on incompatible physical label
rediction regarding a giving outfit. The outfit numbers of training, val-
dation, and testing sets in the experiment are 11,023, 3149, and 1575,
espectively. The physical attributes on the dataset are categorized as
ody figure, skin color, hairstyle, hair color, height, breasts, and color
ontrast. Each aspect has corresponding detailed attributes. For clarity,
he labels of each aspect are listed in Table 1 and the corresponding
abel distribution is presented in Fig. 3.

From Table 1, we can see that the frequency of occurrence of some
ttributes is low while others are relatively high. Fig. 3 indicates that
he label distribution of the dataset is imbalanced, and directly conduct-
ng multi-label classification on the dataset will be very challenging.
ore importantly, the low frequency of some labels indicates that

he labels are not significant to the compatibility of an outfit for an
ndividual with specific physical information. For example, the labels
rom the aspect of hair style rarely occur, which indicates that the
robability of individual incompatibility tends to have little connection
ith this kind of label. Thus, it is reasonable to ignore such labels and

rain a model focusing on the important labels for the evaluation of
hysical incompatibility. To this end, we calculate the occurrence rate
f each label and select the labels with the rate ≥ 0.1. The number of
7

Table 2
Performance comparison based on Resnet18 backbone.

Method mAP CP CR CF1 OP OR OF1

Resnet18 37.28 22.76 19.42 20.96 65.64 38.69 48.68
C-Tran 32.15 20.13 33.33 25.10 59.86 63.70 61.72
MGTN 35.98 31.75 37.89 34.55 55.01 59.78 57.29
CSRA 41.41 39.79 33.46 36.35 65.26 60.15 62.60
MCAR 39.86 40.41 30.34 34.66 64.15 51.42 57.09
M3TR 35.99 20.25 33.28 25.18 60.70 63.61 62.12
ASL 37.97 20.34 33.20 25.20 61.06 63.46 62.24
TDRG 38.17 40.16 33.98 36.81 60.14 54.26 57.05
Ours 47.99 42.39 40.42 41.38 66.54 66.48 66.51

Table 3
Performance comparison based on Resnet50 backbone.

Method mAP CP CR CF1 OP OR OF1

Resnet50 35.12 23.59 14.36 17.85 64.92 29.10 40.18
C-Tran 39.36 28.92 29.66 29.29 61.78 51.31 56.06
MGTN 37.20 34.22 28.76 31.25 56.35 43.15 48.87
CSRA 42.87 38.57 34.01 36.15 66.02 60.76 63.28
MCAR 40.78 43.09 32.88 37.30 63.74 55.27 59.20
M3TR 34.93 20.22 33.33 25.17 60.59 63.70 62.10
ASL 39.74 32.19 32.07 29.62 64.0 55.29 59.33
TDRG 38.58 20.65 32.40 25.22 61.96 62.07 62.01
Ours 47.65 43.47 40.85 42.14 67.72 63.02 65.28

Table 4
Performance comparison based on Resnet101 backbone.

Method mAP CP CR CF1 OP OR OF1

Resnet101 35.01 21.79 22.66 22.22 64.67 44.72 52.88
C-Tran 36.74 30.33 30.13 30.23 62.85 56.24 59.36
MGTN 36.79 27.73 27.84 27.78 61.64 46.26 52.85
CSRA 42.65 39.64 34.75 37.04 65.71 61.28 63.42
MCAR 39.31 33.48 30.76 32.06 65.45 61.15 30.76
M3TR 34.61 20.22 33.23 25.14 60.57 63.53 62.02
ASL 39.34 37.10 30.89 29.59 62.90 53.74 57.96
TDRG 40.40 36.09 30.98 33.34 65.04 54.66 59.40
Ours 47.17 43.31 42.02 42.66 66.93 63.82 65.34

selected labels is 𝑐𝑝 = 15, and the selected label distribution is shown
in Fig. 4, from which we can see that the label distribution is smoother
than that in Fig. 3, but multi-label classification on the selected data is
also challenging as the label distribution is still imbalanced.

4.2. Personalized compatibility evaluation (RQ1)

To evaluate the performance of the proposed method and the com-
parison method in terms of personalized compatibility prediction, we
conducted extensive experiments on the O4U dataset. The experi-
mental results of all methods based on the backbones of Resnet18,
Resnet50, and Resnet101 on the O4U dataset are shown in Tables 2–4,
respectively. From the results, we can make the following observations:

(1) The proposed method can obtain better performance with a
large margin for almost all metrics than the comparison methods,
demonstrating the superiority of the proposed framework. The poten-
tial reason is that the two transformer encoders of the proposed method
take random amounts of known labels for training and it can discover
the potential correlations among different feature and label combina-
tions and generalize to the complicate prediction during the testing
stage. Additionally, different from C-Tran which also uses transformer
mechanism, the proposed method utilizes the second transformer to
learn the independence among the initial physical attribute embeddings
and the visual feature and attribute embeddings that obtained from the
first transformer encoder, to improve the prediction performance.

(2) Compared to the Resnet baseline, all the other methods can
achieve better performance, especially on the CF1 and OF1, which are
the most important metrics (Chen, Wei, et al., 2019). This indicates
the effectiveness of the additional components in these methods. For
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Table 5
Fashion attribute prediction results of the proposed method based on different backbones.
Resnet18 Resnet50 Resnet101

Parts mAP WP WR WF1 mAP WP WR WF1 mAP WP WR WF1

U 67.07 58.31 62.22 60.2 71.70 65.14 65.70 65.42 73.34 67.16 67.74 67.45
B 77.07 71.02 72.59 71.8 83.53 75.49 76.27 75.88 85.32 76.88 78.20 77.53
S 82.21 77.43 77.04 77.23 85.49 80.8 79.70 80.24 87.41 83.03 81.71 82.36
G 73.45 69.30 70.27 69.78 76.16 73.62 69.64 71.57 79.41 73.94 75.1 74.51
Table 6
The performance of the proposed method with different inputs fed to the transformer
encoder.

Input mAP CP CR CF1 OP OR OF1

Ours_cs1 41.1 27.8 26.3 27 62.6 46.7 53.5
Ours_cs2 44.9 38.4 36.4 37.4 66.1 60.1 63
Ours_cs3 33 15.9 26.7 19.9 59 50.4 54.3
Ours 47.17 43.31 42.02 42.66 66.93 63.82 65.34

the proposed method, the potential reason for the high performance is
that the correlations among the visual features, the fashion attributes,
and the physical attributes are explored by the transformer encoder for
learning more effective representations for multi-label classification.

(3) Although the performance of all methods is hard to satisfy the
real application of online personalized fashion compatibility evalua-
tion, the proposed work in this paper is still necessary and valuable as
it provides a new viewpoint to consider the personalized compatibility
towards individual physical information, outfit visual features, and the
corresponding fashion item attributes, which is consistent with human
perception of fashion aesthetics.

4.3. Fashion attribute prediction (RQ2)

To evaluate the effectiveness of the proposed method on fashion
attribute prediction, we use attribute label embeddings of the top,
bottom, shoes, and bag that learned from the first transformer encoder
in the proposed framework for multi-fashion-attribute prediction on the
corresponding item images. The experimental results of the proposed
method based on Resnet18, Resnet50, and Resnet101 are shown in
Table 5, where the mAP, WP, WR, and WF1 are used as they can
calculate the weighted average result to account for the attribute label
imbalance problem. From Table 5, we can know that the proposed
method is effective for fashion attribute classification, and tends to
obtain better performance when the neural network gets deeper.

4.4. Outfit-attribute attention explanation (RQ3-4)

RQ3-4 is too abstract to answer with quantitative metrics, and we
explore the potential effect of the attention mechanism in the proposed
method on attribute prediction and compatibility evaluation via atten-
tion visualization. In Figs. 5, 11(a), 11(b), 12(a) and 12(b) (the figures
except Fig. 5 are shown in the appendix due to page limitation), the
results on the left show the predicted fashion attributes of top, bottom,
shoes, and bag and the corresponding visual attention regions over the
images, while the results on the right show the predicted incompatible
physical labels towards the outfit with corresponding attention regions.
From the results, we can draw the following interesting points:

(1) According to the predicted fashion attributes and the corre-
sponding highlighted attention regions, we can know that the attention
mechanism tends to locate the key regions of the images with distinct
patterns, colors, or shadings. For example, the pants can be recognized
by highlighting the crotch of the pants in the second row in Figs. 5 and
12(a) while skirts in the second row in Figs. 11(a) and 11(b) have no
such information.

(2) However, locating the aforementioned key features may mislead
8

the model into generating fake predictions, especially when two fashion
attributes have a similar property. For example, the silhouette of the
pants in Fig. 5 is ‘‘A’’ while the model predicts it as ‘‘H’’ due to the
H-like attention shape. In addition, the model tends to predict most
fashion attributes as the attributes that have high occurrence frequency.
For example, the neckline of the top item in Fig. 12(b) is predicted as
‘‘R,’’ but it is ‘‘Turtle’’. Although the model has correctly highlighted
the neckline region of the top item, it provides a fake prediction as the
‘‘R’’ attribute occurs more frequently than the ‘‘Turtle’’ attribute.

(3) The figures show that the physical attribute prediction tends to
be more related to body shape than other aspects. This is reasonable
as the aspect of the body figure is of high occurrence frequency on the
dataset, as shown in Fig. 4. The highlighted attention regions of the
body figure in Figs. 5 and 12(a) indicate that the attention regions can
perceive the shape or edge of the items while the highlighted attention
regions of skin color tend to be related to the color or textures. The
observation is consistent with human aesthetics as we usually consider
silhouette characteristics for a given body shape and perceive the visual
color matching for individual skin color.

4.5. Potential relationship towards fashion attributes and physical attributes
(RQ5)

The compatibility of fashion attributes and physical attributes can
be intuitive or inexplicit under different situations. To explore the po-
tential relationship between fashion attributes and physical attributes,
Figs. 6 and 7 show the heatmaps with fashion attributes marked on
the horizontal axis and the physical attributes marked on the vertical
axis. The heatmap is extracted from the proposed framework’s attention
matrix from the last transformer. Although defining explicit match-
ing rules for the physical attributes and different fashion attributes
is challenging, we still can observe some interesting points as the
following:

(1) In Fig. 6, the body shapes of the spoon and bottom hourglass
have similar sensitivity to the fashion attributes of the top category.
This is reasonable as they have similar characteristics that the upper
body looks slimmer than the lower body. Interestingly, the body shapes
of triangles and inverted triangles are completely opposite and look
intuitively different. A user with a triangle body shape is recommended
to try a T-shirt with a slim silhouette, while the user with an inverted
triangle body shape should avoid such kinds of items. In Fig. 6, the
highlighted regions on the right show that the inverted triangle body
shape is sensitive to the slim silhouette attribute while the triangle body
shape is not so relevant.

(2) Additionally, the body shapes of triangle, spoon, bottom hour-
glass, and inverted triangle present various sensitivity in the bottom
silhouette, especially when the silhouette is slim. As highlighted in
Fig. 7, the slim silhouette has a strong effect on the compatibility of
the triangle, spoon, and bottom hourglass, while the inverted triangle
tends to fit the attribute more easily. This is consistent with our human
perception of body shape characteristics and silhouette design.

(3) The highlighted row in Fig. 6 indicates that a tall user tends
to easily fit an item with any fashion attributes while the short user
may face difficulty doing so. Both Figs. 6 and 7 indicate that skin color
and hair color are more sensitive to different fashion attributes than
the height. It is because color matching usually plays an important role
in outfit compatibility learning. The variations in skin colors or hair
colors may affect the overall visual compatibility, and thus they are

more sensitive to different fashion attributes.
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Fig. 5. Example: attention visualization on fashion attribute and personalized outfit compatibility.
Fig. 6. The heatmap visualization of the physical attributes towards fashion attributes of top category.
4.6. Ablation study (RQ6)

In this section, the performance of the proposed method is examined
under different cases for personalized outfit compatibility prediction.

(1) Fig. 8 presents the CF1 of the proposed method with various
values of the parameter 𝜆. The curve in Fig. 8 keeps improving with
increasing values at the beginning and it reaches the peak when the
value of 𝜆 is 1.0. For simplicity, we set 𝜆 = 1.0 for the proposed method
in all experiments.

(2) For the objective function in Eq. (25), the overall loss composes
of attribute loss, personalized loss, and multi-label smoothing loss.
To explore the effect of each component, we denote the following
variations of the proposed method:
9

Ours_var1: There has no attribute loss and smoothing loss in the
objective loss function.

Ours_var2: There has smoothing loss but no attribute loss in the
objective loss function.

Ours_var3: There has to attribute loss but no smoothing loss in the
objective loss function.

The performance of the variations is shown in Fig. 9 and the result
indicates the effectiveness of each component of the proposed method.

(3) The transformer encoder plays an important role in learning the
correlation between the visual feature embeddings and the label em-
beddings. To explore how different inputs of the transformer affect the
performance of physical label prediction, we use different combinations
of the embeddings to feed to the transformer.
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Fig. 7. The heatmap visualization of the physical attributes towards fashion attributes of bottom category.
Fig. 8. The performance of the proposed method with different values of the parameter
𝜆.

Fig. 9. The performance of different variations of the proposed method.

Table 6 shows the detailed metric values of the proposed method
with different inputs fed to the transformer, where Ours_cs1, Ours_cs2,
Ours_cs3 and Ours corresponds to the cases when the input is [𝑙′𝑎𝑡𝑡, 𝑙𝑝],
[ℎ, 𝑙𝑝], [𝑧, 𝑙′𝑎𝑡𝑡, 𝑙𝑝], and [ℎ, 𝑙′𝑎𝑡𝑡, 𝑙𝑝] for the last transformer encoder, 𝑙𝑝
denotes the initial physical label embedding, 𝑙′ , ℎ denote attribute
10

𝑎𝑡𝑡
Fig. 10. Performance of the proposed method with different inputs fed to the
transformer encoder.

label embedding and feature embedding after the first transformer
encoder, 𝑧 is the feature embedding after the Resnet feature extractor.
Fig. 10 demonstrates the results for intuitive comparison of different
cases. From Table 6 and Fig. 10, we can see that the performance of
the proposed method is affected by different combinations of the em-
beddings. Comparing with Ours_cs1 and Ours_cs2, the proposed method
presents high superiority with [ℎ, 𝑙′𝑎𝑡𝑡, 𝑙𝑝] fed to the last transformer,
which indicates that exploring the correlation among the learned em-
beddings of visual features, fashion attributes and physical labels with
the seconder transformer encoder in Fig. 2 is effective for personalized
outfit compatibility prediction.

5. Conclusion

This paper proposes a personalized outfit compatibility prediction
method, which can be regarded as a multi-label classification problem
given a set of fashion images from different categories. The method
considers the personalized outfit compatibility problem from a new
viewpoint, while the existing methods usually consider the personalized
outfit learning from the fashion item with specific patterns or attributes
or the users’ visual preference to achieve private stylist. Instead, we
propose connecting outfit compatibility with individual physical at-
tributes, such as body figure, hairstyle, skin color, etc., for complete
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Fig. 11. Examples: attention visualization on fashion attribute and personalized outfit compatibility.
Fig. 12. Examples: attention visualization on fashion attribute and personalized outfit compatibility.
compatibility learning. It is the first attempt to solve the personalized
outfit compatibility evaluation problem via interacting with physical
information and fashion attributes. To evaluate the performance of the
proposed method on incompatible physical label prediction over an
outfit, we conduct extensive experiments on the O4U dataset. The quan-
titative and qualitative results on the dataset verified the superiority of
the proposed method compared with state-of-the-art methods.

However, since the attribute distribution of fashion items and the
physical label distribution of outfits are imbalanced, the personalized
multi-label classification task is challenging and the performance of the
proposed method as well as the comparison methods are not satisfying.
In the future, on the one hand, we need to collect more outfit data with
rich fashion attribute and physical attribute annotations by supervised
or unsupervised techniques to release the label imbalance problem.
On the other hand, we need to develop an enhanced model which
can discover the fashion aesthetics relationship among visual fashion
elements and personalization information for effective personalized
fashion compatibility learning.
11
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