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A B S T R A C T

Online stylist service enjoys huge economic potentials due to the trend of transformation of the fashion
industry to digitalisation. Existing works either predict the fashion compatibility from the overall aspect
or evaluate the compatibility with type-conditional representations. The prediction is hard to interpret due
to the abstractive forecast. This paper proposes a visual and semantic representation model for explainable
evaluation and recommendation. The model considers fashion compatibility from different factors, such as
colour, material and style, by leveraging low to high-level features from former to later layers of CNN.
The colour correlation and the pairwise relationship of fashion items in the same outfit are considered
during the prediction stage. Instead of just predicting an outfit as compatible or incompatible, the model
can classify an outfit as three precise evaluation levels: Good, Normal and Bad. The detailed compatible
level is more consistent with the fashion sense of our human brain as Good or Bad outfits may have specific
characteristics while Normal outfits tend to be ordinary. Additionally, the model can diagnose and recommend
substitutions of the problematic fashion items from overall compatibility or colour-specific aspects by tracking
the prediction matrices’ backpropagation gradients during the recommendation stage. Experiments in terms
of outfit compatibility prediction and fill in the blank are conducted to evaluate the prediction ability of
the proposed model. In contrast, fashion substitution recommendation experiments are conducted to assess
the compatibility diagnosis and recommendation ability. Quantitative and qualitative results show that the
model enables online stylist services with excellent explainability and generalisation on fashion prediction and
recommendation.
1. Introduction

What to wear and how to match sets of fashion items to build
a good look is ordinary in our daily life (Qasem, 2021). With the
fashion industry’s shift to digitalisation, online stylist service enjoys
increasingly economic potentials (Longo, Padovano, Cimmino, & Pinto,
2021; Seo & Shin, 2019). It would be enjoyable and efficient to have a
compatibility assistant that can help to evaluate the compatibility of a
given outfit and recommend items to complete an attractive look (Yang
& Huang, 2011).

To achieve this goal, this paper designs an intelligent compatibility
model to provide online stylist service to improve customer experience.
As shown in Fig. 1, the model can be used for the applications of
colour-preferred fashion recommendations and outfit complements. A
customer can first select the colour she/he likes, and the model will
retrieve outfits that fit the requirement. Outfits with similar styles can
be recommended and the composition can be revised by changing items
with the same or different categories. Meanwhile, the model can help
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customers make efficient and wise decisions when they are browsing
fashion items. As shown in the right of Fig. 1, given a fashion item,
the model can recommend other items to complete an outfit. The items
can be recommended from both online datasets or personal wardrobes.
Customers can pick outfits with high compatibility scores and avoid the
cost of buying unnecessary products by being noticed the compatible
items that they already have in their wardrobe. The model can also
recommend the best outfits to the customers from the shopping cart
by evaluating and comparing the compatibility scores. The similarity
among items is an important metric to evaluate the compatibility of
a given outfit when developing machine learning algorithms (Kuang,
Gao, Li, Luo, Chen, Lin, et al., 2019; Liu, Song, Nie, Gan, & Ma,
2019). When assessing the compatibility of an outfit, many factors
will be considered. Visually, we analyse the compatibility from the
factors like colour, material, design and style, etc.. We expect intelligent
models to perceive aesthetics like the human brain and feed them
with professional fashion knowledge during the training procedure.
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Fig. 1. Illustration of application scenarios of the proposed model.
The knowledge like fashion description, category and compatibility
label are annotated for each outfit on the existing datasets. The task
of fashion compatibility evaluation and recommendation is to extract
discriminant features from large amounts of fashion items and learn po-
tential matching patterns from the outfit data. The convolutional neural
network (CNN) (Albawi, Mohammed, & Al-Zawi, 2017) is suitable for
dealing with such task due to its powerful feature extraction ability.
CNN can automatically and effectively detect important features and
achieve competitive detection and recognition performance. Although
the training procedure of a CNN model usually requires hours to days as
there are thousands of parameters to be optimised, the trained model is
still efficient in the testing stage and it is practical for real applications
on fashion evaluation platforms. There have been some CNN based
techniques for solving the evaluation and recommendation problems
in fashion area.

Metric learning is a common approach to evaluate the similar-
ity/dissimilarity of any data pairs by applying a distance function
to the representations in a high-dimensional space (Kolisnik, Hogan,
& Zulkernine, 2021; Tan, Vasileva, Saenko, & Plummer, 2019). The
similarity comparison is usually conducted under a unified embedding
space where similar data are expected to be close while dissimilar data
are widely separated. However, this is not the actual case when a white
up item matches both of the shoes 1 and 2 in Fig. 2(a). Metric learning
under the unified embedding space will force the two kinds of shoes to
be close, but they belong to different styles and should not be of high
similarity from our understanding. Thus, the similarity is not a natural
way to evaluate the compatibility. Instead, it is a problem telling the
model to compare different fashion factors. To this end, several works
have been proposed to learn the similarity among fashion items under
other conditions (such as fashion category) (Vasileva, Plummer, Dusad,
Rajpal, Kumar, & Forsyth, 2018; Veit, Belongie, & Karaletsos, 2017).
This kind of method can help to simplify similarity relationships of
items from different contexts by learning and comprising the similarity
conditioned on only one embedding space at a time. The comparison
under type-conditional area thus avoids the problem of forcing incom-
patible fashion items close with metric learning (Vasileva et al., 2018).
The conditioned space learning relies on the labels of the data, such
2

as category or attribute. Thus, it is hard to generalise such learning to
unseen cases. For learning the similarity of different contexts, Tan et al.
proposed a similarity condition embedding network to learn multiple
similarity conditions from the unified embedding space by treating the
similarity conditions as latent variables and optimising the problem
in a weakly supervised manner (Tan et al., 2019). The conditioned
similarity learning methods try to explore the compatibility evaluation,
but they fail to explain the reason why an outfit is compatible and
how to improve its compatibility (Yang, Song, Feng, Wen, Duan, & Nie,
2021). It is necessary and interesting to explain the compatibility of
different fashion factors without using rich fashion information.

The fashion factors of colour, print, material, silhouette and design
details are the principal aspects for designers to evaluate the compat-
ibility of a given outfit. As shown in Fig. 2(a), which pair of shoes
that best match the given fashion items (i.e. white up, black–white
patterned bottom and black crossbody bag)? The first option is leopard-
print, peep-toe heels, and the second is black stilettos. Visually, the
second is more compatible with the outfit as the factors of colour and
print are more harmonious. The second option with solid black is close
to the black–white bottom and the black bag, while the first option with
leopard-print in three colours of black, brown and off whites makes the
outfit dazzling. Additionally, the style of the first option is different
from that of the given items. Thus, the second option is recommended
due to its compatibility with respecting to the colour correlation,
print combination, and style fusion factors. To evaluate and explain
the compatibility of outfits from a fashion factor aspect, Zou et al.
proposed a compatibility evaluation and reasoning method to include
this kind of factor into the design of the network and constructed the
Evaluation3 dataset for training and evaluating the performance of
the method (Zou, Li, Bai, Lin, & Wong, 2020). The method provides
judgement in three compatibility levels: Good, Normal and Bad, and
explains the evaluation results with the defined factors of colour and
print. Since the method learns explanations based on the training on the
dataset with predefined fashion factors, it is hard to generalise to other
datasets that have no such annotated factors. Chen et al. proposed a
model based on attentive neural networks to capture the discriminative

region features, especially in terms of hue, texture and colour, with the
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Fig. 2. Evaluation and recommendation samples and analysis.

supervision of both implicit feedback and textual reviews to explain
the recommendation (Chen, Zhang, Xu, Cao, Qin, & Zha, 2018b). Hou
et al. suggested explaining fashion recommendations with intuitive
visual attribute’s guidance. Specifically, it first learns a fine-grained
interpretable semantic space and then projects users and fashion items
to this space to understand users’ semantic preferences. Instead of just
designing a visual feature for recommendation explanation, Lin et al.
considered comments of fashion items and proposed to improve the
performance with joint outfit matching learning and comment genera-
tion (Lin, Ren, Chen, Ren, Ma, & de Rijke, 2018). Yang et al. proposed
to evaluate the outfit compatibility by matching patterns between fash-
ion attributes and developed an explainable solution based on attribute
aspect (Yang et al., 2021). Kim et al. also tried to explain the compati-
bility with visual attribute representations in a self-supervised learning
manner. The self-supervised method considers three tasks correspond-
ing to three concepts: colour histograms, discrimination of shapeless
local patches and textures of every fashion item (Kim, Saito, Mishra,
Sclaroff, Saenko, & Plummer, 2021). Revanur et al. proposed a semi-
supervised learning method to help to create large-scale pseudo positive
and negative outfits by leveraging unlabelled fashion corpus (Revanur,
Kumar, & Sharma, 2021). There are other related methods for solving
the outfit compatibility problems with different schemes (Duggal, Zhou,
Yang, Xiong, Xia, Tu, et al., 2021; Su, Song, Zheng, Guan, Li, & Nie,
2021; Wang, Cheng, Wang, & Liu, 2021; Zhan, Lin, Ak, Shi, Duan,
& Kot, 2021). All these methods tend to explain the recommendation
with vague visual overall/region features, or recommend fashion items
3

without considering the relationships among different items within an
outfit.

The task of outfit compatibility evaluation is based on several
fashion items, and outfit recommendation is expected to complete or
even improve the look based on given one or multiple items (Li, Chen,
& Huang, 2021; Lu, Hu, Chen, & Zeng, 2021). The intuitive factors like
colour, material and style are potential explanations for the intelligent
recommendation (Yu, Hui, & Choi, 2012). Outfit diagnosis is a task
that can help to improve compatibility by learning the incompatible
factors of a given outfit. Wang et al. proposed conducting compati-
bility evaluation with a multi-layered comparison network (MCN) and
implementing outfit diagnosis by tracking the most problematic items
with large backpropagation gradients of the comparison matrix (Wang,
Wu, & Zhong, 2019). The recommendation is implemented by sub-
stituting the unsuitable items with the most compatible items on the
dataset. MCN assumes the former layers in the deep neural network
tend to learn low-level features like the colour and texture of images.
In contrast, the latter tends to learn more abstracting features like
style, and thus, it tries to explain the outfit compatibility with those
features in an undefined manner. MCN has been verified effective for
evaluating the compatibility of given outfits and providing reason-
able explanations of undefined factors like colour, texture and style.
However, MCN does not consider the pairwise relationship of colour
correlation among different fashion items in the same outfit, which
is also potentially crucial for meaningful interpretation. Additionally,
MCN and most existing methods evaluate an outfit as compatible or
incompatible, ignoring the detailed fashion compatibility levels. The
compatibility can be classified into more complex levels: Good, Normal
and Bad. It is consistent with the fact that when an outfit has some
unique/outstanding features, we consider it good, but most outfits tend
to be normal without attractive designs. Bad outfits have inharmonious
factors, like colour correlation, patterns or strange designs.

This paper proposes evaluating outfit compatibility and recom-
mending fashion substitutions more generally by exploring potential
fashion factors in a unified framework. The proposed model does not
assess the compatibility from predefined factors and instead tries to
interpret the evaluation from assumed aspects. As shown in Fig. 2(b),
the model can provide automatic diagnosis and recommendation ser-
vice by predicting the compatibility level and interpreting the potential
problematic factors of outfits that are captured or uploaded by cus-
tomers. Substitutions can be recommended based on the predicted
potential factors to improve the compatibility level of the outfits. The
model aims to provide a general solution for outfit evaluation and
recommendation, and it can be easily applied to most of the existing
datasets without the requirement of rich annotated fashion factors.
Overall, the contributions of this paper can be concluded as:

(1) Different form the existing methods, the proposed method con-
siders the outfit evaluation task in a more generalised and reasonable
way. The generalisation results from no requirement of pre-defined
factors for the large amounts of fashion images. The method can instead
learn the potential compatibility factors with the interpretation from
the multi-layered features. The colour-specific compatibility and overall
visual-semantic compatibility are jointly learned and the fashion factors
are sensed in a way that is more similar to human aesthetics. Thus, the
interpretation for the evaluation result is more reasonable.

(2) The diagnosis and recommendation function of the proposed
method is different from the existing methods as the compatibility can
be improved from Normal/Bad to Good level via recommending more
compatible substitutions by comparing the importance of pairwise
items with backpropagation gradients.

(3) Experiments on three large-scale outfit datasets are conducted
and extensive qualitative and quantitative results demonstrate the ef-
fectiveness of the proposed method.
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2. Related works

In this section, related works that focus on the problem of out-
fit compatibility learning and explainable recommendation are intro-
duced.

The similarity of image pairs is usually measured by metric learning,
which typically projects two objects to a general embedding space and
obtains the distances as the measure of the similarity with a distance
function (Chopra, Hadsell, & LeCun, 2005; Hadsell, Chopra, & LeCun,
2006; Wang, Song, Leung, Rosenberg, Wang, Philbin, et al., 2014).
Since the distance of any two objects is computed under a shared space,
the difference of the objects respecting different contexts is neglected.
To overcome this shortcoming, methods that consider the similarity
with disentangled representations under other conditions have been
proposed (Vasileva et al., 2018; Veit et al., 2017). Vasileva et al.
proposed to evaluate the similarity of data pairs by learning different
embedding spaces respecting to different type combinations (Vasileva
et al., 2018). There are two main drawbacks in these methods for outfit
compatibility: (1) the methods measure the compatibility by taking the
average of all pairwise similarities. The effect of pairwise similarity
for overall compatibility is not considered. Pairwise similarity can be
significant for finding the problematic fashion items and providing wise
substitutions in the diagnosis and recommendation process; (2) the
methods do not offer a concrete judgement of compatibility levels for
an outfit, and the compatibility interpretation is not provided.

To deal with the explainability problem, Zou et al. proposed an ex-
plainable evaluation network based on Grad-CAM (Selvaraju, Cogswell,
Das, Vedantam, Parikh, & Batra, 2017). It first extracts factor-aware
features named intra-factor compatibility features with an independent
net. All the outfit features are concatenated and fed into an inter-factor
compatibility net, and the compatibility judgement in terms of three
levels: Good, Normal, Bad, is obtained. The reasons for the judgement
are diagnosed by the backpropagation gradients based on the previous
concatenation of intra-factor compatibility features (Zou et al., 2020).
The explanation is forced to align with annotated reasons in terms
of factors of colour and print, which mimics the analysing process
of fashion experts. The method focuses on providing reasons for the
compatibility judgement from a factor aspect. The recommendation
about improving the compatibility is not considered since compatibility
tends to be evaluated from a factor aspect. The problematic items in the
outfit are hard to be located.

There have been some methods proposed for explainable outfit
recommendations. Yang et al. proposed to take advantage of the rich
attributes associated with fashion items for interpretable fashion match-
ing. It can predict the compatibility score and provide interpretable
patterns of the good matching (Yang, He, Wang, Ma, Feng, Wang, et al.,
2019). Feng et al. proposed a partitioned embedding network that uses
an attribute partition module to learn attribute embedding within the
overall embeddings respecting different parts and applies an adversarial
partition module to achieve the independence of other parts. The
compatibility is explainable by constructing an attribute matching map,
while the outfit compositions can be customised by creating an outfit
composition graph (Feng, Yu, Yang, Jing, Jiang, & Song, 2018). Lin
et al. proposed a neural outfit recommendation network to provide
outfit recommendations with generated abstractive comments by taking
visual features, and user comments of fashion items (Lin et al., 2018).
First, the method extracts visual features from a convolutional neural
network and obtains matching predictions with a rating score. Then,
the visible components are transformed into a concise sentence by
designing a gated recurrent neural network. The generated comments
are then used to explain the recommendations. Most of the existing
methods cannot diagnose the problem of the outfit regarding the items,
and thus the recommendation cannot guarantee the minor revision
with the most considerable compatibility improvement. Wang et al.
4

proposed a multi-layered comparison network (MCN) to take pairwise c
visual features from former to later layers to construct different compar-
ison matrices for compatibility prediction. The network can diagnose
the most problematic fashion items by using backpropagation gradients
related to the comparison matrices to approximate the importance of
each similarity of pairwise items for the compatibility of the whole
outfit (Wang et al., 2019).

The proposed method in this paper also uses multi-layered features
to compute the similarity of pairwise fashion items for compatibility
prediction. The difference between the proposed method and MCN lies
in three folds: first, the proposed method takes the colour correlations
of the outfits to enhance the compatibility performance; second, the
proposed method first applies Transformer module to learn the rela-
tionship among different items in the outfit and then computes the
pairwise similarity to predict the compatibility into three levels: Good,
Normal and Bad, while MCN directly applies the multi-layered features
to compute the pairwise similarity and predict the outfit as compatible
or incompatible; third, the proposed method can not only diagnose
the problematic items for an incompatible outfit but also recommend
items to improve the outfit from low to high levels respecting to
colour-specific or overall compatibility.

3. Methodology

Given an outfit with 𝑝 fashion items with different categories, such
as top, bottom, shoes, bag and accessories, without loss of gener-
ality, we denote the outfit as 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑝] ∈ 𝑅𝑝×𝑑 , where

is the dimensionality of the fashion images. Most existing works
valuate an outfit with a predicted compatibility score and classify it
nto two levels: compatible and incompatible. Differently, we develop
n end-to-end framework, called a multi-layered features and colour
orrelation enhancement network (MLCC), to implement the evaluation
nd recommendation function. MLCC classifies the outfit into three
evels: Good, Normal and Bad from overall compatibility and colour-
pecific aspect. For the outfit which is classified as Normal or Bad, the
odel can diagnose the most problematic items and recommend sub-

titutions from overall or colour-specific aspects to improve the outfit
ompatibility. MLCC comprises multi-layered feature analysis, colour
orrelation enhancement, and visual-semantic similarity preservation.
he architecture of MLCC is illustrated in Fig. 3. More details of each
omponent are described in the following sections.

.1. Multi-layered feature analysis

Given an outfit, we human brains usually perceive the compatibility
rom multiple factors, such as fashion colour, print, material, silhouette
nd design details (Zou et al., 2020). Thus, we expect intelligent
valuation models to perceive fashion aesthetics in the similar way.

When training a model to mimic how our brain evaluates an outfit,
wo main problems need to be considered. On the one hand, large
mounts of annotated data are required for the training of the model.
owever, most existing outfit datasets are not labelled with rich infor-
ation, such as compatibility in terms of colour, print, material, etc.
herefore, training a model to perceive such fashion descriptions is not
ractical. Even if we have this kind of dataset for model training, it is
ot guaranteed that the model can learn how we perceive aesthetics as
ome unknown factors can affect our judgement on an outfit. Therefore,
redefinition of certain aspects of compatibility is not the only way that
an be used to train a model to perceive fashion aesthetics.

Deep neural network with the powerful ability of feature extraction
an be used to learn representations of fashion items from low to
igh levels (Feng, Yu, Jing, Wu, Song, Yang, et al., 2019; Vadood &
aji, 2022). The network contains multiple layers and can perceive

arger fields with layers that go deeper. The former layers tend to
apture low-level features such as colour, texture whilst the later layers
end to learn high-level features such as fashion style and overall
ompatibility (Wang et al., 2019). Based on this regard, multi-layered
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Fig. 3. The architecture of the proposed framework. The framework comprises four components: 1. multi-layer feature analysis; 2. colour-correlation enhancement; 3. visual-semantic
similarity preserving, and 4: outfit diagnosis and recommendation. Three compatibility levels (Good, Normal, Bad) are learned from the enumerated pairwise similarity at different
layers. The backpropagation gradient is used to approximate the contribution of each item to outfit compatibility. The outfit with levels of Normal or Bad can be improved to the
level of Good by recommending more compatible substitutes. The diagnosis and recommendation process is interpretable by tracking the gradient matrix.
representations are considered in the proposed model, and the details
of this component are shown in the middle part of Fig. 3. The feature
learning layers 1–4 is constructed based on ResNet50 and the con-
struction of each layer is similar to that in Wang et al. (2019). The
feature maps obtained from layers 1–3 are reshaped to vectors and fed
into Transformer module to learn the pairwise relationship of the same
outfit. The features from layer 4 are not fed to Transformer module
as the final high-level representations are assumed to be effective
and should be directly fed to the prediction module for compatibility
prediction.

For the Transformer module, the weight of embedding ℎ𝑖 with
respect to ℎ𝑗 in the same outfit is learned through self-attention. The
attention weight 𝑎𝑖,𝑗 is defined as

𝑎𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑊 𝑞ℎ𝑖)𝑇 (𝑊 𝑘ℎ𝑗 )∕
√

𝑑), (1)

ℎ̄𝑖 =
𝑝
∑

𝑗=1
𝑎𝑖,𝑗𝑊

𝑣ℎ𝑗 , (2)

ℎ̃𝑖 = 𝑅𝑒𝐿𝑈 (ℎ̄𝑖𝑊 𝑟 + 𝑏1)𝑊 𝑜 + 𝑏2, (3)

where 𝑊 𝑘, 𝑊 𝑞 , 𝑊 𝑣 are key, query and value matrices, 𝑊 𝑟 and 𝑊 𝑜 are
transformation matrices, and 𝑏1, 𝑏2 are bias vectors. The Transformer
encoder contains 4 heads and 3 layers, and the weight matrices 𝑊 𝑘,
𝑊 𝑞 , 𝑊 𝑣, 𝑊 𝑟 and 𝑊 𝑜 at each layer are not shared. The rules of Eq. (1)
to Eq. (3) are repeated with updated embeddings ℎ̃𝑖 fed to the next
layer.

As reported by previous works (Chen, Yin, Wang, Wang, Nguyen, &
Li, 2018a; Vasileva et al., 2018), evaluating the similarity of fashion
items from different types in a shared space will lead to undesired
problems. For example, all bottom items compatible with top items
will be forced to be close in the shared space. An item like a white
T-shirt can be compatible with many kinds of bottoms or bags, such
as colourful skirts or bags. However, those skirts and bags can be
incompatible, and they should not be forced to be close to each other in
the shared space. To avoid this problem, a solution is to define specific
space for fair comparison for these items from different types.

In this module, the embeddings after Transformers are projected to
the type-aware spaces to obtain masked embeddings by

ℎ̃(𝑖−>𝑖,𝑗) = 𝑅𝑒𝐿𝑈 (ℎ̃𝑖
⨂

𝑚𝑖,𝑗 ), (4)

where 𝑚𝑖,𝑗 is a learnable mask vector, ⨂ is element-wise product
operation. 𝑚𝑖,𝑗 provides element-wise gating function and the type-
combination relevant elements are selected to feed to the successive
prediction modules. The masks are expected to be sparse to select
5

the most relevant features, whilst the masked embeddings should be
balanced. To achieve this goal, 𝐿1 and 𝐿2-norms are used to regularise
the variables of 𝐿𝑚𝑎𝑠𝑘 and 𝐿𝑒𝑚𝑏:

𝐿𝑚𝑎𝑠𝑘 = ‖𝑚‖1, (5)

𝐿𝑒𝑚𝑏 = ‖𝑥‖2. (6)

The prediction modules of layers 1–4 are independent and work as
the following manner. The embedding pairs (ℎ̃𝑖, ℎ̃𝑗 ) ∈ 𝐻 = (ℎ̃1, ℎ̃2,… ,
ℎ̃𝑝) from each layer are respectively concatenated and fed to a fully
connected layer. The predicted scores (𝑠𝑖,𝑗) in terms of three levels
(Good, Normal, Bad) are obtained by the linear transformation func-
tion, i.e. 𝑠𝑖,𝑗 = 𝑓 (ℎ̃𝑖, ℎ̃𝑗 ). The prediction matrices 𝑀 𝑙 ∈ 𝑅𝑝×𝑝,3 are shown
as tables in Fig. 3, where 𝑙 denotes the 𝑙th layer. The average prediction
matrix is computed based on the four matrices and fed to the activation
function to obtain the compatibility scores with respect to three classes
of Good, Normal and Bad. The prediction loss is computed with Cross
Entropy loss function (De Boer, Kroese, Mannor, & Rubinstein, 2005)
as below:

𝐿𝑡𝑓 = − 1
𝑁

𝑁
∑

𝑖

𝐶
∑

𝑐=1
𝑦𝑖𝑐 𝑙𝑜𝑔(𝜎(ℎ𝑡𝑓 )), (7)

where 𝐶 is the class number, 𝑦𝑖𝑐 is 1 when the real label is 𝑐, 0 other-
wise, 𝜎(ℎ𝑡𝑓 ) is the probability function and ℎ𝑡𝑓 is the image embeddings
after Transformer module. During training, 𝜎(ℎ𝑡𝑓 ) is implemented with
the average prediction matrix fed to the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function to
obtain the probabilities of the three compatibility levels.

3.2. Colour-correlation enhancement

The colour correlation of an outfit greatly affects compatibility, and
more attention should be paid to when designing an evaluation model.
In this section, to take advantage of the colours, we first extract colour
features for each fashion item and then construct the outfit’s colour
correlation matrix. To implement this, the FoCo system (Zou, Wong,
Gao, & Zhou, 2019) is used to extract 5 main colours of every image
and each colour is denoted with a 5-dimensional vector, i.e. 𝑐𝑖 ∈ 𝑅5 and
𝐶 ∈ 𝑅5×5, where 𝑐𝑖 is 𝑖th colour vector and 𝐶𝑗 represents colour matrix
of 𝑗th fashion item in an outfit. Then, we have a colour representation
of an outfit as 𝑂𝑐 ∈ 𝑅𝑝,5×5.

Suppose the batch size as 𝑏, the colour correlation is defined as
2 (8)
𝑊𝑖,𝑗 = ‖𝐶𝑖 − 𝐶𝑗‖𝐹 ,
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where 𝑊𝑖,𝑗 ∈ 𝑅𝑏,𝑝×𝑝 indicates the colour difference among different
ashion items with given 𝑏 outfits. We compute the average colour
ifference of every fashion item concerning others by using

̇ 𝑖 =
1
𝑝

𝑝
∑

𝑖=1
𝑊𝑖,𝑗 , (9)

where �̇�𝑖 ∈ 𝑅𝑏,𝑝×1. �̇� is reshaped as �̄� ∈ 𝑅𝑏,𝑑𝑖𝑚,𝑝 where 𝑑𝑖𝑚 is the
dimensionality of embeddings from Transformer module of layer 1. By
projecting the embeddings to the colour difference space, we have

�̃� = 𝐻�̄� , (10)

where �̃� ∈ 𝑅𝑏,𝑝×𝑝 is the colour correlation representation of 𝑏 outfits.
Further, we project the embeddings to �̃� again and have

�̃�𝑐 = �̃� 𝐻, (11)

where �̃�𝑐 ∈ 𝑅𝑏,𝑝×𝑑𝑖𝑚 is the colour-correlation enhanced embeddings.
After the transformation, the model is expected to learn the colour cor-
relations of different items in the outfits. Thus, we use the following loss
to minimise the difference of colour correlation after the transformation
as mentioned above:

𝐿𝑐𝑤 = ‖�̃� −𝑊 ‖

2
𝐹 , (12)

where 𝐿𝑐𝑤 is the colour correlation loss.
The structure of the prediction module is similar to that in the

multi-layered feature analysis component. The colour-weighted feature
embeddings in Eq. (11) are fed to the prediction module to compute
the compatibility score. The prediction score in terms of three levels
can be denoted as 𝑦𝑐 ∈ 𝑅𝑏×3 and the loss between the prediction and
the ground truth is expected to be minimised with the Cross-Entropy
loss function:

𝐿𝑐𝑓 = − 1
𝑁

𝑁
∑

𝑖

𝐶
∑

𝑐=1
𝑦𝑖𝑐 𝑙𝑜𝑔(𝜎(ℎ𝑡𝑐𝑓 )), (13)

where ℎ𝑡𝑐𝑓 is the embeddings after colour-correlation enhancement
module and 𝜎(ℎ𝑡𝑐𝑓 ) is the prediction function implemented with the
prediction matrix fed to the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function to obtain the
probabilities of the three compatibility levels.

3.3. Visual-semantic similarity preserving

Multi-modal information is usually used to describe a fashion item,
such as images, texts, etc. The proposed model uses visual Semantic
Embedding (VSE) (Kiros, Salakhutdinov, & Zemel, 2014) to make full
use of such information for compatibility learning.

For an outfit composed of 𝑝 fashion items, each item is described by
its text description. The text description of 𝑖th item can be denoted as 𝑒𝑖,
a one-hot vector. The word embedding of 𝑒𝑖 is represented as 𝑣𝑖 = 𝑊𝑇 𝑒𝑖,
where 𝑊𝑇 is the weight matrix in the word embedding model. Then,
we have semantic embeddings of the outfit as 𝑣 = 1

𝑝
∑𝑝

𝑖 𝑣𝑖. Similarly,
he visual embeddings of the outfit can be denoted as 𝜇 = 𝑊𝐼𝑥, where
𝑊𝐼 is a weight matrix for visual embedding transformation.

VSE assumes that the visual and semantic embeddings of the same
fashion item should be close while that of different fashion items should
be far. To achieve this goal, the visual-semantic loss is formulated as

𝐿𝑣𝑠𝑒(𝑣, 𝜇;𝑊𝑇 ,𝑊𝐼 )

=
∑

𝑢

∑

𝑘
𝑚𝑎𝑥(0, 𝑟 − 𝑑(𝜇, 𝑣) + 𝑑(𝜇, 𝑣𝑘))

+
∑

𝑣

∑

𝑘
𝑚𝑎𝑥(0, 𝑟 − 𝑑(𝑣, 𝜇) + 𝑑(𝑣, 𝜇𝑘)),

(14)

where 𝑑(⋅) is the distance function, 𝑟 is a margin parameter, (𝜇, 𝑣)
denotes visual-semantic embedding pairs while 𝑣𝑘/𝑢𝑘 is the seman-
6

tic/visual embeddings of different fashion items in the outfit. e
3.4. Outfit diagnosis and recommendation

Similar to the work in Wang et al. (2019), the backpropagation
gradients are used to approximate the importance of each similarity
of every fashion pair on the compatibility of an outfit. Differently, the
compatibility is considered from three levels: Good, Normal, Bad, and
the procedure of obtaining the similarity importance of each similarity
is different.

Given an outfit 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑝], we can obtain four prediction
matrices from the multi-layered feature analysis module. As shown in
Fig. 3, the compatibility score is obtained by linear projection in the
fully connected module at each layer, and the prediction matrix is with
the size of (𝑝 × 𝑝, 3) as

𝑅𝑙 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑔11 𝑠𝑛11 𝑠𝑏11
𝑠𝑔12 𝑠𝑛12 𝑠𝑏12
... ... ...
𝑠𝑔𝑝𝑝 𝑠𝑛𝑝𝑝 𝑠𝑏𝑝𝑝

⎤

⎥

⎥

⎥

⎥

⎦

, (15)

here 𝑅𝑙 is the prediction matrix at 𝑙th layer (𝑙 = 1, 2, 3, 4), 𝑠𝑔𝑖,𝑗 , 𝑠
𝑛
𝑖,𝑗 , 𝑠

𝑏
𝑖,𝑗

enote the pairwise prediction with respect to the Good, Normal and
ad levels. The score of each compatibility level over the 𝑙 layers can
e expressed as
𝑔
𝑖,𝑗 = 𝑊 𝑔

𝑖,𝑗 [�̃�
1
𝑖,𝑗 ; �̃�

2
𝑖,𝑗 ; .., �̃�

𝑙
𝑖,𝑗 ; ] + 𝑏𝑔 , (16)

𝑛
𝑖,𝑗 = 𝑊 𝑛

𝑖,𝑗 [�̃�
1
𝑖,𝑗 ; �̃�

2
𝑖,𝑗 ; .., �̃�

𝑙
𝑖,𝑗 ; ] + 𝑏𝑛, (17)

𝑏
𝑖,𝑗 = 𝑊 𝑏

𝑖,𝑗 [�̃�
1
𝑖,𝑗 ; �̃�

2
𝑖,𝑗 ; .., �̃�

𝑙
𝑖,𝑗 ; ] + 𝑏𝑏, (18)

here 𝑠𝑔𝑖,𝑗 , 𝑠
𝑛
𝑖,𝑗 , 𝑠

𝑏
𝑖,𝑗 are the prediction of the 𝑖 and 𝑗th fashion items in

n outfit. 𝑊 𝑔
𝑖,𝑗 , 𝑊

𝑛
𝑖,𝑗 , 𝑊

𝑏
𝑖,𝑗 are the weight matrices while 𝑏𝑔 , 𝑏𝑛 and 𝑏𝑏 are

he biases.
Since the aforementioned equations are linear, the backpropagation

radients of 𝑊 𝑔
𝑖,𝑗 , 𝑊 𝑛

𝑖,𝑗 , 𝑊 𝑏
𝑖,𝑗 can be used to interpret the importance

f each similarity of the pairwise combinations respecting to the com-
atibility levels of Good, Normal and Bad. The backpropagation gra-
ients are the derivatives of compatibility score 𝑠 with respect to the
mbedding combinations [�̃�1

𝑖,𝑗 ; �̃�
2
𝑖,𝑗 ; ..; �̃�

𝑙
𝑖,𝑗 ] at 𝑙 layers:

𝑔
𝑖,𝑗 =

𝜕𝑠𝑔𝑖,𝑗
𝜕[�̃�1

𝑖,𝑗 ; �̃�
2
𝑖,𝑗 ; ..; �̃�

𝑙
𝑖,𝑗 ]

, (19)

𝑛
𝑖,𝑗 =

𝜕𝑠𝑛𝑖,𝑗
𝜕[�̃�1

𝑖,𝑗 ; �̃�
2
𝑖,𝑗 ; ..; �̃�

𝑙
𝑖,𝑗 ]

, (20)

𝑏
𝑖,𝑗 =

𝜕𝑠𝑏𝑖,𝑗
𝜕[�̃�1

𝑖,𝑗 ; �̃�
2
𝑖,𝑗 ; ..; �̃�

𝑙
𝑖,𝑗 ]

. (21)

he outfit diagnosis can be implemented by tracking the gradients of
he weight matrices of the three compatibility levels. When an outfit
s evaluated as Normal or Bad, the compatibility can be improved
y outfit diagnosis and recommendation. The similarity importance of
ach fashion item can be obtained by summing up all the relevant
radients as

𝑞 =
𝐿
∑

𝑙=1

𝑝
∑

𝑖=𝑞,𝑗≠𝑞
𝑤𝑙

𝑖𝑗 , (22)

here 𝑤𝑞 is the diagnosed importance of the 𝑞th fashion item. The
rocedure of automatic diagnosis and recommendation on three levels
f compatibility (i.e. Good, Normal and Bad) is summarised in Table 1.

The colour-correlation enhancement module can also provide the
unction of outfit diagnosis and recommendation. The module is ex-
ected to focus more on colour when evaluating outfit compatibility
r recommending substitutions. The assumption will be verified by the
xperimental results in the Experiment section.
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Table 1
The automatic diagnosis and recommendation algorithm.
Algorithm 1 The procedure of automatic diagnosis and recommendation

Input: 𝑋 = [𝑥1 , 𝑥2 ,… , 𝑥𝑝] ∈ 𝑅𝑝×𝑑 is an outfit with 𝑝 fashion items of 𝑑
dimensions. 𝑇 is the maximum iteration of finding substitutions; 𝜖 is the
threshold of the compatibility score of good level (𝜖 = 90%).
Step 1 Prediction procedure: predict the compatibility scores of good,
normal and bad levels as 𝑋 ∶ (𝑝𝑔 , 𝑝𝑛 , 𝑝𝑏);
Step 2 Diagnosis procedure: if (𝑝𝑔 < 𝜖), find the most problematic items and
return the importance order as 𝑋𝑜;
Step 3 Recommendation procedure:
For each 𝑥 ∈ 𝑋𝑜 ∶

𝑡 = 0;
do {
(1) Randomly select an outfit (𝑂𝑟) from the testing set;
(2) Generate new outfit (𝑂𝑛) by substituting 𝑥 with item in 𝑂𝑟
with the same category;
(3) Predict the compatibility score of 𝑂𝑛;
(4) 𝑡 = 𝑡 + 1;
}while (𝑝𝑔 < 𝜖 && 𝑡 ≤ 𝑇 )

End for
Output: 𝑂𝑛 as the final recommendation result.

To the end, the proposed model comprises four components, and
he overall optimisation objective is described as

= 𝐿𝑡𝑓 + 𝜆1𝐿𝑐𝑓 + 𝜆2𝐿𝑐𝑤 + 𝜆3𝐿𝑣𝑠𝑒

+𝜆4𝐿𝑚𝑎𝑠𝑘 + 𝜆5𝐿𝑒𝑚𝑏,
(23)

here 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 are parameters to balance the six terms. The
verall parameters of (23) are 𝛩; 𝑊 𝑘, 𝑊 𝑞 , 𝑊 𝑣, 𝑊 𝑟 and 𝑊 𝑜, 𝑏1, 𝑏2;
𝑇 , 𝑊𝐼 , 𝑀 where 𝛩 are the parameters in the CNN network, 𝑊 𝑘, 𝑊 𝑞 ,
𝑣, 𝑊 𝑟 and 𝑊 𝑜, 𝑏1, 𝑏2 are the parameters in the Transformer module

n the multi-layered feature analysis component and 𝑊𝑇 , 𝑊𝐼 , 𝑀 are
arameters in the visual-semantic similarity preserving component. All
he parameters can be optimised by back-propagation in a standard
anner.

. Experiments

Experiments on three datasets were conducted to evaluate the
erformance of the proposed method for outfit compatibility pre-
iction and recommendation. The datasets include the Evaluation3
ataset which provides detailed compatibility levels for each outfit, the
olyvore-T dataset which provides general label annotation as compati-
le or incompatible, and the POG dataset which contains large amounts
f outfit data from the online shopping website (taobao.com) (Chen,
uang, Xu, Guo, Guo, Sun, et al., 2019). The prediction performance
f the proposed method is compared with several related methods,
nd the results in terms of automatic outfit diagnosis and substitution
ecommendation are presented.

.1. Datasets

For the Evaluation3 dataset (Zou et al., 2020), the compatibility
evel is labelled as Good, Normal and Bad. Good outfits possess specific
nique designs that make them visually stand out from the others.
n contrast, Normal outfits are just visually harmony concerning the
redefined factors: colour, print, material, silhouette and design details.
ad outfits contain at least one pair of fashion items incompatible with
ne factor. The proposed model does not evaluate the compatibility
rom the predefined factors. Instead, it tries to interpret the evaluation
rom assumed aspects. We aim to develop a general solution that can
e easily applied to most of the existing outfit datasets without rich
nnotation information.

To evaluate the generalisation ability of the proposed model, exper-
ments on the Polyvore-T dataset were also conducted. The outfits on
his dataset are annotated with category, title and compatibility label
7

w

s compatible or incompatible. More details of the construction of the
ataset can be found in Wang et al. (2019). POG dataset comprises data
rom another domain that is different from Evaluation3 and Polyvore-

datasets. The data source of POG dataset is from taobao.com which
s different from Evaluation3 and Polyvore-T datasets. The original
OG dataset contains 1.01 million outfits and 583 thousand fashion
tems with rich annotated context information. We downloaded the
irst 37,555 outfits and filtered those outfits with less than four items.
inally, we have a subset of POG with 18,961 outfits. The subset was
hen separated to two partitions: the first partition containing 10,133
utfits was used for training, validation and testing while the second
artition containing 8,828 outfits was used for the evaluation of the
roposed method and other compared methods at a large-scale level.
or clarity, we call the two testing sets in our experiments as Test-1 and
est-2. The attributes of the Evaluation3, Polyvore-T and POG datasets
re listed in Table 2.
Positive/Negative Samples. In the experiments, the dataset is

ivided into training, validation, and testing sets with 7 ∶ 2 ∶ 1.
very outfit on the Evaluation3 dataset is annotated with a class ground
ruth as class 0, 1, 2 denoting Good, Normal and Bad, respectively.
he outfits are considered positive (compatible) and negative (incom-
atible) for the Polyvore-T dataset, while positive samples come from
he ground truth. The negative examples are generated by randomly
ubstituting an item in the positive outfits with another item with the
ame type from other outfits (Wang et al., 2019). The positive outfits of
he POG dataset are from the ground truth while the negative outfits
re generated by randomly substituting each item in the outfit from
ther outfits with the same categories (Chen et al., 2019).

.2. Tasks

The proposed method can be used to deal with outfit compatibility
rediction and fashion diagnosis and recommendation tasks. It can also
e used for the fill-in-the-blank task. The tasks and the corresponding
valuation metrics are:
Outfit Compatibility Prediction (AUC): The task of outfit compat-

bility prediction is to predict a compatibility score of an outfit. On
he Evaluation3 dataset, the task is a multi-classes prediction prob-
em, while that on the Polyvore-T dataset is binary classification. The
valuation metric on the Evaluation3 dataset is the Area Under the
eceiver Operating Characteristic Curve (ROC AUC) from prediction
cores. In our experiments, the AUC under multi-class classification
nd binary classification is considered and computed by the official
mplementation in PyTorch. For multi-class, it calculates the ROC AUC
cores for each class against all other classes.
Fill-in-the-blank (FITB): Fill-in-the-blank selects the most compat-

ble fashion item from an option list for a given outfit. The list contains
our options for the Polyvore-T dataset and the proposed method. Other
aselines conduct this task by substituting the blank part in the given
utfit with three options and computing the respective compatibility
cores. The predicted answer is regarded as the option that can achieve
he highest compatibility score. The overall accuracy is computed based
n all the predictions and ground truth questions.
Accuracy (ACC): The prediction accuracy concerning multi-class

nd binary are also computed in our experiments. On the Evaluation3
ataset, the binary prediction accuracy is computed by combining the
ood and Normal classes as compatible while the Bad class is regarded
s incompatible.
Outfit Compatibility Diagnosis and Recommendation: Compat-

bility diagnosis and recommendation are to first predict the compati-
ility level for a given outfit. If the level is Normal or Bad, the model
ill diagnose the outfit and recommend substitutes that can improve

he compatibility level to Good. There is no quantitative metrics for
hese tasks, and we evaluate the performance by providing samples

ith human aesthetics.

http://taobao.com
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Table 2
The statistics of the Evaluation3, Polyvore-T and POG datasets.
Dataset Split Top Bottom Shoes Bag Accessory Item Outfit

Train 12,080 9,930 13,885 10,335 – 46,230 22,035
Evaluation3 Val 3,451 2,837 3,967 2,953 – 13,208 6,295

Test 1,725 1,419 1,984 1,476 – 6,604 3,147

Train 13,764 14,849 15,268 12,640 12,093 68614 16,176
Polyvore-T Val 962 1,052 1,124 948 823 4,904 1,196

Test 2,000 2,153 2,314 1,994 1,712 10,173 2,463

Train 7,996 5,080 6,594 4,709 5,923 30,302 7,093
POG Val 2,307 1,419 1,875 1,357 1,692 8,650 2,026

Test-1 1,139 705 949 678 865 4,336 1,014
Test-2 9,980 6,239 8,270 5,861 7,357 37,707 8,828
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4.3. Baselines

The proposed method is compared with several state-of-the-art base-
lines designed for fashion compatibility evaluation. These methods
include:

Pooling (Li, Cao, Zhu, & Luo, 2017): Pooling operation takes a
fashion outfit and its category and title as input and encodes the
visual as well as semantic features with a deep convolutional network,
and Word2vec (Pennington, Socher, & Manning, 2014). It obtains the
quality score with multi-modal fusion and multi-instance pooling.

Self-Attention (Wang, Girshick, Gupta, & He, 2018): The self-
attention mechanism computes the representation at a position as the
weighted representation of the features at all positions. For outfit
compatibility evaluation, it learns representations by considering the
relation of all items in an outfit. In our experiment, the scaled dot-
product attention (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez,
et al., 2017) was used in which the query, key, and value are item
features in the same outfit.

BiLSTM+VSE (Han, Wu, Jiang, & Davis, 2017): BiLSTM learns outfit
compatibility relationships by sequentially predicting the following
item with the condition of previous ones. It regresses image features to
the corresponding semantic representations to learn a visual-semantic
space during the training, and the forward, backward LSTM and VSE
losses are jointly optimised. The cross-entropy between the prediction
and the ground truth is the compatibility score.

CSN (Vasileva et al., 2018): It learns image embeddings concerning
corresponding type-aware space by conditioning different type combi-
nations. The compatibility score is obtained based on the average of all
pairwise compatibility.

MCN (Wang et al., 2019): It considers image features at different
layers and corresponding semantic embeddings to learn and interpret
the fashion compatibility from various potential aspects. The overall
compatibility score is computed by type-specified pairwise similarities
within a given outfit. MCN diagnoses the problematic items in an outfit
by tracking the backpropagation gradients with the comparison matrix.

OCM-CF (Su et al., 2021): OCM-CF is outfit compatibility mod-
elling scheme via complementary factorisation that consists of two
components: context-aware outfit representation learning and hidden
complementary factors modelling. The first component learns out-
fit representation with graph convolutional networks and multi-head
attention mechanism, while the second component applies multiple
parallel networks to discover the latent complementary factors. The
final compatibility score is obtained by summing the scores that derived
from the outfit representations by the parallel networks.

CSA (Lin, Tran, & Davis, 2020): CSA is a category-based subspace
attention network to capture similarities of different outfits for com-
plementary fashion item recommendation. In addition to the category-
based attention mechanism, it utilises a new outfit ranking loss to learn
the item relationships among the whole outfit. The loss needs triples as
input, i.e. an outfit with a set of compatible fashion items, a positive
fashion item that goes well to the outfit, and a set of negative items
8

that is incompatible to the positive outfit. o
4.4. Experiment settings

The experiments were completed on a desktop PC with NVIDIA
GTX2080 GPU with 8 GB memory. The OS is Ubuntu 20.04.2 LTS, the
CPU is Intel(R) Core(TM) i7-8700K @3.70 GHz with 11 processors, and
the memory size is 32 GB.

Training Settings. In all experiments, the ResNet50 pre-trained on
ImageNet is used as the backbone, and the size of the training images
on the Polyvore-T and POG datasets is 224 × 224 while that on the
Evaluation3 dataset is 112 × 112. The lengths of fashion items of each
outfit on the Evaluation3 dataset is 4 including top, bottom, shoes and
bag, while that on the Polyvore-T and POG datasets is 5 including
op, bottom, shoes, bag and accessories. On the Polyvore-T dataset, the
nput length can be from 3 to 5 with the missing part filled with the
ean image while POG dataset has at least 4 fashion items in each

utfit. Unlike the Evaluation3 and Polyvore-T datasets that composed
f fashion items labelled with 4 or 5 types (i.e. top, bottom, shoes, bag
nd accessories), the fashion items on the POG dataset are labelled with
pecific categories. For simplicity, the type-aware learning strategy is
ot used for training the proposed method on this dataset, and instead,
he embeddings after Transformer are directly fed to the prediction
odule. The batch size for the experiments on the Evaluation3 and
OG is 16 while that on the Polyvore-T dataset is 24. SGD optimising
trategy with a momentum of 0.9 is used during the training process.
ll methods are trained with 50 epochs during the training process, and

he model parameters with the best performance on the validation set
ill be saved for testing.
Parameter Analysis. There are five parameters (i.e. 𝜆1−5) in the

bjective function and their values should be selected properly. Figs. 4
nd 5 show the performance of the proposed method at different pa-
ameter values in which the variation curves are obtained by changing
he values of one parameter while fixing the others. As we can see, the
arameters can affect the performance to a certain degree. Specially,
ifferent values of 𝜆1,2,3 can lead to fluctuation of the performance. In
ur experiments, it is reasonable to set the values of 𝜆1 and 𝜆2 on all
atasets as 5𝑒−3 and 𝑒−2 for simplicity, while the values of 𝜆3,4,5 are set
s 1, 5𝑒−4 and 5𝑒−3, respectively (the settings of 𝜆3,4,5 is similar to Wang
t al. (2019)).

.5. Prediction performance

The prediction performance of the proposed method and the com-
ared methods are evaluated in this section. All methods are trained
ith multi-class cross-entropy during the training process and evalu-
ted with three and binary classification performance during the testing
tage.

The classification results on Evaluation3, Polyvore-T and POG
atasets are shown in Tables 3–5, respectively. The result shows that
he proposed method can obtain the best performance compared with
ther methods. The task of FITB is challenging as filling in the blank
n the given outfit with a substitution may have little effect on the

verall compatibility, and the compatibility difference among the four
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Fig. 4. Parameters analysis of 𝜆1 , 𝜆2 and 𝜆3.
Fig. 5. Parameters analysis of 𝜆4 and 𝜆5.
Table 3
Prediction performance of different methods on the Evaluation3 dataset.
Method Good/normal/bad Compatible/incompatible

AUC (%) ACC (%) AUC (%) ACC (%)

Pooling 79.89 ± 0.00 78.58 ± 0.00 83.22 ± 0.00 90.21 ± 0.00
Self-Att 77.99 ± 0.00 77.18 ± 0.00 81.64 ± 0.00 89.89 ± 0.00
BiLSTM 49.70 ± 2.06 25.17 ± 27.42 49.86 ± 1.35 57.67 ± 42.03
CSN 49.80 ± 1.00 37.67 ± 33.33 50.32 ± 1.62 73.03 ± 34.29
SCE 48.72 ± 0.88 25.68 ± 27.13 50.13 ± 0.19 73.02 ± 34.32
MCN 82.45 ± 0.00 77.95 ± 0.00 87.31 ± 0.00 90.37 ± 0.00
CSA 52.71 ± 0.00 74.16 ± 0.00 52.24 ± 0.00 88.36 ± 0.00
OCM-CF 45.78 ± 0.00 74.17 ± 0.00 47.81 ± 0.00 88.37 ± 0.00
Ours 85.21 ± 0.00 79.00 ± 0.00 89.84 ± 0.00 91.26 ± 0.00
conditional outfits are too trivial to classify. BiLSTM obtains poor per-
formance because of no repeating items of the same type in the outfit,
which is similar to the experiments in Vasileva et al. (2018), Wang
et al. (2019). MCN and the proposed method obtain better performance
than most of the compared methods as they both consider multi-
layered features and learn compatibility with pairwise comparison in
the outfits. However, the proposed method outperforms MCN as it
weights feature relationships at different layers with the Transformer
module and incorporates colour correlation of different items in the
outfit to highlight the interaction in the colour aspect. The advantage
of the proposed method can be more distinct for 3-class classification
on the Evaluation3 dataset as detailed compatibility level leads to a
9

clearer distinction on potential fashion factors like colour, material
and pattern. As shown in Fig. 6, the outfits on the left-hand side
belong to bad compatibility, and they tend to be inharmonious in terms
of colour and pattern combination. In contrast, the outfits from the
middle and right-hand sides look more compatible with harmonious
colour combinations and consistent styles. The visualisation of binary
classification on the Polyvore-T dataset is shown in Fig. 7, where the
sum of prediction scores of compatible and incompatible is 100% and
the distribution of the data points is linear. Then we can see that the
incompatible and compatible outfits have a large gap respecting to
fashion factors like colour, material, pattern and style. Additionally, the
gap among the outfits that are classified as compatible is still distinct
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Fig. 6. The visualisation of evaluating results of the proposed method on the Evaluation3 dataset.
Fig. 7. The visualisation of compatibility on Polyvore-T dataset.
Table 4
Prediction performance of different methods on
Polyvore-T dataset.
Method AUC (%) FITB (%)

Pooling 88.35 ± 0.26 57.28 ± 0.31
Self-Attention 79.65 ± 0.68 48.60 ± 0.70
BiLSTM 74.44 ± 0.95 45.41 ± 0.40
CSN 84.90 ± 0.52 57.06 ± 1.70
SCE 67.77 ± 1.04 14.04 ± 0.38
MCN 91.90 ± 0.40 64.35 ± 0.92
CSA 91.00 ± 0.00 63.73 ± 0.00
OCM-CF 92.00 ± 0.00 63.62 ± 0.00
Ours 92.16 ± 0.25 65.65 ± 0.37

from human aesthetics as the outfits in the middle and the right-hand
side can be perceived as compatible at different levels.

4.6. Outfit diagnosis and recommendation

In this section, we explore the performance of the proposed method
in terms of compatibility diagnosis and recommendation by compatibil-
ity improvement from low to the high level, the diagnosis at different
layers and recommendation comparison between colour enhancement
and overall compatibility.
10
Table 5
Prediction performance of different methods on the POG dataset.
Method Test-1 Test-2

AUC (%) ACC (%) AUC (%) ACC (%)

Pooling 50.25 49.41 50.07 50.24
Self-Att 55.58 55.58 53.29 49.91
BiLSTM 57.96 53.55 53.54 52.21
CSN 44.60 52.27 45.77 49.83
SCE 52.95 49.31 50.75 49.90
MCN 74.67 68.05 76.28 68.03
CSA 48.20 48.72 50.67 49.58
OCM-CF 77.59 66.17 76.69 66.74
Ours 79.02 69.53 77.01 69.03

4.6.1. Compatibility improvement from low to high level
This section shows examples of the proposed method in diagnosing

problematic fashion items and recommending substitutions for given
outfits. Figs. 8 and 9 show the results of compatibility improvement on
the Evaluation3 and the Polyvore-T dataset, respectively.

As shown in Fig. 8, the first outfit on the left column is predicted
as Normal, and the trousers are considered as the problematic item
and suggested to be replaced with a skirt that can improve the overall
compatibility level. The prediction and recommendation are consistent
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Fig. 8. The compatibility evaluation and recommendation result of the proposed method on Evaluation3 dataset.
Fig. 9. The compatibility evaluation and recommendation result of the proposed method on Polyvore-T dataset.
Fig. 10. The overall compatibility diagnosis and improvement result of the proposed method on Evaluation3 dataset. The ground truth is Normal, the prediction is Normal.
with human aesthetics. The original outfit has no outstanding aspects
as the four items’ colour, material, and design are compatible but not
attractive. The floral-patterned skirt with harmonious colour makes the
outfit more appealing and syllable for the improved outfit. For the
second outfit, on the one hand, the up item with highly saturated colour
make the whole look too dazzling, and the styles of the four items
are inconsistent. On the other hand, the primary colours: red, blue,
baby blue, lake blue and grey, are incompatible. The proposed method
tries to improve the overall compatibility with as few as possible
substitutions. Finally, the bottom, bag, and shoes are replaced with
more compatible items in terms of colour and style. The improved outfit
is more compatible, especially the colour combination, and the style is
more consistent. The potential reason for this result is that the model
can learn some hidden rules for obtaining a high compatibility score,
such as the colour correlation, style preference from the training data,
and the recommended items consistent with the rules. The potential
rules are compatible with the illustration in Fig. 6 as the colours, prints
and styles within the same outfit from Bad to Good levels are becoming
more and more compatible.

4.6.2. Comparison between colour enhancement and overall compatibility
To further explore the potential rules of how the proposed method

improves outfit compatibility from low to the high level, we show the
11
diagnosis and improvement procedure of examples on the Evaluation3
dataset. In particular, Figs. 10 and 12 show the procedures of diagnosis
and recommendation from overall compatibility while Figs. 11 and
13 show the procedures from the colour enhancement module. In
Fig. 10, the model predicts the bottom as the most difficult part and
recommends a brown patterned skirt to improve the compatibility.
This is visually consistent with human aesthetics as the skirt makes
the outfit more outstanding. In Fig. 11, the colour module tends to
recommend items with similar colours or tones to improve the outfit
as the colour similarity among different items are getting high while
the recommendation step increases. However, the style between the
previous item and the substitute is slightly different (first vs the second
row). The improved outfit has a different style from the original outfit
(first vs the last row). This can also be verified by Fig. 13. Unlike the
colour module that tends to focus more on colour or other low-level
aspects, the overall compatibility tends to consider not only colour,
material but also the style and other potential factors, and the style
of the improved outfit is more consistent with the original one. The
comparison between Figs. 10, 12, 11 and 13 indicates that the proposed
method can diagnose the most problematic items and recommend
compatible items to improve the compatibility level from low to high.
On the other hand, the colour module tends to focus more on colour or
other low-level features, and the recommendation results may change
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Fig. 11. The colour module compatibility diagnosis and improvement result of the proposed method on Evaluation3 dataset. The ground truth is Normal, the prediction is Normal.
Fig. 12. The overall compatibility diagnosis and improvement result of the proposed method on Evaluation3 dataset. The ground truth is Bad, the prediction is Bad.
the original style. However, the proposed method tends to consider low-
level features and complex and abstract features when evaluating the
compatibility, and it can achieve high compatibility in a few steps.

4.6.3. Diagnosis and recommendation at different layers
The importance of pairwise similarity approximated with the back-

ward gradients at different layers on the Polyvore-T dataset are shown
in Figs. 14–16. In Fig. 14, the orange bottom has the greatest effect
on the compatibility at all layers, which is consistent with the human
diagnosis. The bag and shoes are more harmonious on colour or style
while they are not very compatible with the causal bottom no matter
on colour or style aspect.

In Fig. 15, the up and bag with high saturated colours tend to be in-
compatible in terms of low-level features, which can be reflected by the
first two layers. Visually, the bottom and up colours are harmonious,
but the styles are different. This is diagnosed by the last two layers
that focus more on high-level features that reflect the abstract factors.
In Fig. 16, we can find that the up-bottom or up-accessory have the
12
most significant impact on the overall compatibility at all layers. This
is because the material and style of the up are visually inharmonious
to other items.

4.7. Study of explainability and generalisation

Explainability. Fashion is extremely subjective and every user may
have their own opinion on the same outfit. Explainability makes the
results provided by the model more convincing which is crucial to
enable users to trust the online stylist service. The proposed method
evaluates compatibility by taking advantage of multi-layered features.
The backpropagation gradients of the prediction matrices at different
layers can be used to approximate the potential factors of the incom-
patibility. The maximum of gradients at different layers are listed, and
the possible factors are predicted. As shown in Figs. 17 and 18, the
outfits on the left columns are with low compatibility while those on
the right columns are revised to have high compatibility. For example,
it is obvious that the up at the fourth row in Fig. 17 has a different
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Fig. 13. The colour module compatibility diagnosis and improvement result of the proposed method on Evaluation3 dataset. The ground truth is Bad, the prediction is Normal.
Fig. 14. Example of diagnosing incompatible outfit at different layers.
Fig. 15. Example of diagnosing incompatible outfit at different layers.
style with the bottom as the up is casual while the bottom is elegant.
The original outfit is suggested to substitute the up and bag with the
more compatible items in style and colour aspects. The revised outfit
enjoys a Good level of compatibility, which is consistent with our
human aesthetics. At the first row of Fig. 18, Layer 1 holds the most
significant gradient, which indicates that the low-level features, such
13
as colour and material, have a strong impact on the compatibility. The
grey up is not as consistent as the brown up with the black bag and
dark brown shoes. The down jacket in the original outfit at the second
row is not compatible with the bag while substituting the jacket with
the black–white patterned sweater makes the outfit more harmonious
and neat.
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Fig. 16. Example of diagnosing incompatible outfit at different layers.
Fig. 17. Potential factor prediction based on comparison of different layers on Evaluation3 dataset.
Fig. 18. Potential factor prediction based on comparison of different layers on Polyvore-T dataset.
Generalisation. Apart from being explainable, generalisation abil-
ity is vital for online stylist service as well. Currently, all outfit datasets
proposed for fashion compatibility learning are collected from Polyvore,
14
on which the outfits are made and uploaded by different fashion lovers.
The compatibility annotations of the outfits actually reflect subjective
fashion senses. Thus, we expect the model trained on these data can
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Fig. 19. Compatibility prediction based on downloaded images.
Table 6
Statistical significance test for comparing relevant methods.
p-value/t-staticts Ours MCN Pooling Self-Att

Ours – 0.0169/3.5237 0.0199/3.3686 0.0411/2.7346
MCN 0.0169/3.5237 – 0.0036/5.1591 0.0802/2.1893
Pooling 0.0199/3.3686 0.0036/5.1591 – 0.0369/2.8247
Self-Att 0.0411/2.7346 0.0802/2.1893 0.0369/2.8247 –
perceive the general essentials of fashion matching instead of only
learning the distribution of the Polyvore data. To test the generalisa-
tion ability of the proposed model, we have conducted compatibility
evaluation experiment on other source domain. Specifically, a set of
outfits that captured from a TV drama 1 are used to test the performance
of the proposed model for cross-domain compatibility prediction. The
compatibility of the original items in an outfit from the drama plus two
different items with the same category are evaluated, and the result is
shown in Fig. 19. As we can see, the shoes in the first outfit in the
first row can lead to a large compatibility gap, which indicates that
an item can improve or even deteriorate an outfit. For the first outfit
in the second row, the two shoes with the same designs, materials but
different colours can lead to other compatibility scores. It indicates that
colour is an essential factor when conducting compatibility evaluation
with the proposed model, which is consistent with our initial assump-
tion. Overall, the prediction result is reasonable as the outfits from the
drama are commented on with high compatibility by the audience.

4.8. Statistical significance test

The comparison of prediction performance is an effective way to
evaluate an model, but there may exist statistical fluke. To improve the
confidence in the interpretation and presentation of the experimental
results of different methods, in this section, we apply statistical hy-
pothesis testing (Benjamin, Berger, Johannesson, Nosek, Wagenmakers,
Berk, et al., 2018) to conduct a deeper comparative study.

The statistical hypothesis testing is to evaluate the mean perfor-
mance difference that comes from the cross-validation procedure. In

1 <<Now, We Are Breaking Up>>; image source: https://wakwb.com/.
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Table 7
Ablation study on Evaluation3 dataset.
Method Good/normal/bad Compatible/incompatible

AUC (%) ACC (%) AUC (%) ACC (%)

Ours+1FC 83.48 79.69 89.01 91.74
Ours+2FC 75.76 78.20 89.72 91.36
Ours+CP 82.68 80.04 88.98 91.99
Ours_noC 84.05 78.90 89.15 91.07
Ours 85.21 79.00 89.84 91.26

our experiments, we first state the null hypothesis that the difference
does not exist between the two methods and they have the same perfor-
mance. The threshold of significance level is set as 𝛼 = 0.05 for rejecting
the null hypothesis. Then we use 5 × 2cv paired 𝑡 test (Dietterich, 1998)
to compare the two models and obtain the ‘‘p-value’’ that computed
from ‘‘t-statistic’’ as difference. For every two methods, if the ‘‘p-value’’
is below the significance threshold, the null hypothesis can be rejected,
that is, the difference is statistically significant and the two methods
have different performance.

Since MCN, Pooling, Self-Att and the proposed method are directly
convolutional based methods and they require similar data structure
as input, we use these methods in the statistical hypothesis testing. For
the other compared methods, since they are either based on conditional
networks or require triples or graph data as input, they can be consid-
ered distinctly different and they are not necessary for comparison. The
testing result of the pairwise methods is listed in Table 6. As we can
see, the ‘‘p-values’’ of the proposed method are all below 0.05, which
indicates that the null hypothesis can be rejected and the proposed
method is statistically significant.

https://wakwb.com/
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4.9. Ablation study

To explore the performance of the proposed method with different
modules and predictors, an ablation study was conducted on the Eval-
uation3 dataset, and the result is shown in Table 7, where Ours+1FC
and Ours+2FC indicate that the prediction module obtains the compat-
ibility score with 1 or 2 fully connected layers, respectively, Ours+CP
represents the structure of prediction module which is similar to the
comparison procedure in MCN, Ours_noC denotes our model with-
out the colour-correlation enhancement module. The performance of
Ours+1FC and Ours+2FC is inferior to Ours, which indicates the ad-
vantage of the prediction module of the proposed method. Based on
the observation, we also use the same prediction module for MCN for
fair comparison on the Evaluation3 dataset. The prediction module of
our method on the Polyvore-T dataset is similar to that in MCN for
simplicity. The comparison between Ours_noC and Ours indicates that
our method without the colour-correlation enhancement module is still
competitive, and the incorporation of colour-correlation can further
improve the prediction performance.

5. Conclusion

This paper targets on fashion compatibility evaluation via jointly
learning colour and visual semantic features based on multi-layered
convolutional networks and Transformer scheme. Experimental results
on three mainstream fashion outfit datasets, i.e., Evaluation3, Polyvore-
T, and POG, show the advance of the proposed approach. Although the
generalisation enables the easy embedding of the method on fashion
evaluation platform, and the explainability of our method can help
to achieve user’s trust, the lack of personalisation information makes
the method hard to fulfil customers’ expectation. Actually, person-
alised outfit evaluation and recommendation can help fashion lovers
to present their fashion style and personality. Therefore, developing an
algorithm with personalised service towards a specific customer group
will be our next step.
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